²»ÏÞip×¢²áËÍ37Ôª½ð±Ò

ÎÞ»ú·ÇÑо¿Éúµ¼Ê¦
κÓÀÐÇ

»ù±¾ÐÅÏ¢

 

ÐÕÃû£ºÎºÓÀÐÇ                                                                                 ³öÉúÄêÔ£º1985.04

ѧÀú£ºÑо¿Éú                                                                                 Ñ§Î»£º²©Ê¿

Ö°³Æ£º¸±½ÌÊÚ  £¨²©Ê¿Éúµ¼Ê¦£©                                             Ö°Î»£ºÎÞ

ѧԺ£º²»ÏÞip×¢²áËÍ37Ôª½ð±Ò                                                                  ÁªÏµ·½Ê½£ºweiyx1985@gmail.com

ѧϰ¾­Àú

2004-09ÖÁ2008-06£ºÎ÷°²½»Í¨´óѧÀíѧԺ£¬²ÄÁÏÎïÀí£¬Ñ§Ê¿

2008-09ÖÁ2010-06£ºÎ÷°²½»Í¨´óѧÀíѧԺ£¬²ÄÁÏÎïÀíÓ뻯ѧ£¬Ë¶Ê¿

2010-09ÖÁ2014-12£ºÎ÷°²½»Í¨´óѧÀíѧԺ£¬²ÄÁÏ¿ÆÑ§Ó빤³Ì£¬²©Ê¿

¹¤×÷¾­Àú

2014-12ÖÁ2019-12£º²»ÏÞip×¢²áËÍ37Ôª½ð±Ò£¬½²Ê¦

2019-12ÖÁ½ñ£º ²»ÏÞip×¢²áËÍ37Ôª½ð±Ò£¬¸±½ÌÊÚ

2021-03ÖÁ2022-07£º¿Æ¼¼²¿¸ß¼¼ÊõÑо¿·¢Õ¹ÖÐÐÄ£¬ÏîÄ¿Ö÷¹Ü

ÕÐÉúÐÅÏ¢

ÿÄêÕÐÊÕ²©Ê¿Éú1Ãû¡¢Ë¶Ê¿Éú2Ãû

½ÌÓý½Ìѧ

Ö÷½²¿Î³Ì£º¡¶¹ÌÌåÎïÀí¡·¡¢¡¶²ÄÁϱíÕ÷Óë²ÄÁÏÎïÐÔʵÑé¡·

ѧÊõ¼æÖ°

Journal of Advanced Dielectrics (JAD)ÇàÄê±à¼­Î¯Ô±£»

ÖйúÒÇÆ÷ÒDZíѧ»á¹¦ÄܲÄÁÏѧ»áµç×ÓÔªÆ÷¼þ¹Ø¼ü²ÄÁÏÓë¼¼Êõרί»áίԱ£»

Journal of the American Ceramic Society, Journal of Physics and Chemistry of Solids, Materials Science & Engineering B, Separation and Purification Technology, Journal of Materials Science£¬Materials LettersµÈÔÓÖ¾Éó¸åÈË¡£

Ñо¿·½Ïò

1¡¢Ìúµçѹµç²ÄÁÏÏà½çÐÐΪÑо¿

2¡¢µç½éÖʲÄÁÏÓëÆ÷¼þÑÐÖÆ

3¡¢ÒºÏà·¨Éú³¤¸Æîѿ󵥾§¼¼Êõ

4¡¢³ÚÔ¥ÌåºÍ·´ÌúµçÌå´¢ÄÜÌØÐÔ

5¡¢Ìúµç¹â·ü²ÄÁÏÄÜ´øµ÷ÖÆ¼°Ïà¹ØñîºÏЧӦ

6¡¢´ÅµçñîºÏ²ÄÁ϶àÌúÐÐΪ

¿ÆÑÐÏîÄ¿

1¡¢¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ð£¨11704301£©£¬Biϵ˫¾§¸ñλÎÞÐò³ÚÔ¥Ì弫»¯ÏìÓ¦¡¢µçºÉÊäÔËÐÐΪ¼°¿íÎÂÇø´¢ÄÜÌØÐÔÑо¿£¬Ö÷³Ö£¬2018.01-2020.12£¬25.2Íò

2¡¢×°±¸·¢Õ¹²¿×°±¸Ô¤ÏÈÑо¿ÁìÓò»ù½ðÏîÄ¿£¨¿ìËÙ·ö³ÖÏîÄ¿£©, XX³ÚÔ¥XXXX£¬Ö÷³Ö£¬2021.12-2022.05

3¡¢ÉÂÎ÷Ê¡×ÔÈ»¿ÆÑ§»ù´¡Ñо¿¼Æ»® ÃæÉÏÏîÄ¿ (2022JM-212)£¬¾ß±¸ÐÂÐÍ׼ͬÐÍÏà½çµÄº¬Bi³ÚÔ¥ÌúµçÌåµÄ×¼Á¢·½ÏàÐγɻúÀí, Ö÷³Ö£¬2022.01-2023.12£¬50Íò

4¡¢ÉÂÎ÷Ê¡¿Æ¼¼Ìü×ÔÈ»¿ÆÑ§»ù´¡Ñо¿¼Æ»®£¨2018JQ1092£©, Ë«¾§Î»ÎÞÐò³ÚÔ¥Ìå´¢ÄÜÌØÐÔζÈÎȶ¨ÐÔ¼°Ïà¹Ø¼«»¯¡¢´«µ¼ÌØÐÔÑо¿, Ö÷³Ö£¬2018.01-2019.12£¬3Íò

5¡¢ÉÂÎ÷Ê¡½ÌÓýÌüרÏî¿ÆÑ§Ñо¿¼Æ»®£¨19JK0398£©£¬(Bi¡¢A)(Ti¡¢Me)O3ÐÍË«¾§Î»ÎÞÐò³ÚÔ¥Ìå±¾Õ÷½á¹¹¡¢Ïà¹Ø¼«»¯»úÀíÓëζÈͼÏñÑо¿£¬ Ö÷³Ö£¬2019.01-2020.12£¬2Íò

6¡¢²»ÏÞip×¢²áËÍ37Ôª½ð±ÒУ³¤»ù½ðÖØµãÏîÄ¿£¨XAGDXJJ15008£©£¬AFe2O4/(K,Na)NbO3 0-3ÐÍÄÉÃ׸´ºÏ¶àÌúÌմɲÄÁÏÖÆ±¸¹¤ÒÕÓëÐÔÄÜÑо¿£¬Ö÷³Ö£¬2016 .03-2018.03£¬5Íò

7¡¢²»ÏÞip×¢²áËÍ37Ôª½ð±ÒУ³¤»ù½ð£¨¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÏîÄ¿ÅàÓý»ù½ð£©£¬Ö÷³Ö£¬2021 .01-2022.12£¬5Íò

8¡¢¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ð£¨50772087£©£¬Ç¿½é¸ÆîÑ¿óÌÕ´ÉÏßÐÔ½éµçÐÐΪ»úÀíÑо¿£¬²ÎÓ룬2008.01-2010.12£¬26Íò

9¡¢ÉÂÎ÷Ê¡¿Æ¼¼Ìü×ÔÈ»¿ÆÑ§»ù´¡Ñо¿¼Æ»®£¨2018JM414£©, ÄÉÃ×ÒìÖʽáÔÚ¹â´ß»¯½µ½âÖйâÉúÔØÁ÷×Ó·ÖÀëÓëÇ¨ÒÆÄÜÁ¦µÄµ÷¿Ø, ²ÎÓ룬2019.01-2020.12£¬3Íò

10¡¢¹ú¼ÒÖØµãʵÑéÊÒ¿ª·Å»ù½ð£¨K20200159£©£¬¸ßÐÔÄܵç×ÓÌմɵÄÖÆ±¸¼¼ÊõÓëÐÔÄÜÑо¿£¬²ÎÓ룬2020.07-2022.06£¬5Íò

11¡¢ÆóÊÂÒµµ¥Î»Î¯ÍпƼ¼ÏîÄ¿£¨H202210225£©£¬¸÷ÏòÒìÐÔÑõ»¯Îï·ÛÌå²ÄÁϵĿɿغϳÉ£¬²ÎÓ룬2022.10-2024.12£¬15Íò
12¡¢ÆóÊÂÒµµ¥Î»Î¯ÍпƼ¼ÏîÄ¿£¨H201912265£©£¬¸ßÄÜÁ¿ÃܶȵÄLiFePO4ï®Àë×Óµç³ØÕý¼«²ÄÁϱíÃæ¸´ºÏ´¦Àí¼¼Êõ¿ª·¢£¬²ÎÓ룬 2019.12-2020.12£¬5Íò

ѧÊõ³É¹û

µÚÒ»»òͨѶ×÷ÕßѧÊõÂÛÎÄ

1) Yongxing Wei, Xiaotao Wang, Jintao Zhu, Xiaoli Wang*, J. J. Jia, Dielectric, Ferroelectric and Piezoelectric Properties of BiFeO3¨CBaTiO3 Ceramics, J. Am. Ceram. Soc. 2013; 96: 3163-3168. (JCR 1Çø, Time cited: 114£¬ESIǰ3%¸ß±»ÒýÂÛÎÄ)

http://onlinelibrary.wiley.com/doi/10.1111/jace.12475/full 

2) Yongxing Wei*, Ning Zhang, Changqing Jin, Weitong Zhu, Yiming Zeng, Gang Xu, Ling Gao, Zengyun Jian, Bi0.5K0.5TiO3¨CCaTiO3 ceramics: Appearance of the pseudocubic structure and ferroelectric©\relaxor transition characters, J. Am. Ceram. Soc. 2019;102:3598-3608 (JCR 1Çø, J Am Ceram Socǰ10%×î´óÏÂÔØÁ¿ÂÛÎÄ) https://ceramics.onlinelibrary.wiley.com/doi/10.1111/jace.16244

3) Yongxing Wei*, Xiaotao Wang, Jiangjiang Jia, Xiaoli Wang, Multiferroic and Piezoelectric Properties of 0.65BiFeO3¨C0.35BaTiO3 Ceramic with Pseudo-Cubic Symmetry, Ceram. Int. 2012; 38: 3499-3502. (JCR 1Çø,Time cited: 65)

http://www.sciencedirect.com/science/article/pii/S0272884211010509

4) Yongxing Wei*, Changqing Jin, Ruirui Ni, Niming Zeng, Dong Gao, Zengyun Jian, Enhanced photodielectric effect in (0.88¨Cx)Bi0.5Na0.5TiO3¨C0.12BaTiO3¨CxBa(Ti0.5Ni0.5)O3¨C¦Ä (BNBTNO) ceramics, J. Eur. Ceram. Soc.  2018; 38: 4689-4693 (JCR 1Çø)  

https://www.sciencedirect.com/science/article/abs/pii/S0955221918304151

5) Yongxing Wei*, Changqing Jin,Yiming Zeng, Xiaotao Wang, Dong Gao, Xiaoli Wang, A coexistence of multi-relaxor states in 0.5BiFeO3¨C0.5BaTiO3, Ceram. Int. 2017; 43:17220-17224. (JCR 1Çø) http://www.sciencedirect.com/science/article/pii/S0272884217319326

6) Yongxing Wei*, Changqing Jin, Yiming Zeng, Xiaotao Wang, Gang Xu, Xiaoli Wang, Polar order evolutions near the rhombohedral to pseudocubic and tetragonal to pseudocubic phase boundaries of the BiFeO3-BaTiO3 system, Materials 2015; 53: 8355-8365. http://www.mdpi.com/1996-1944/8/12/5462

7) Yongxing Wei*, Chenxing Bai, Weitong Zhu, Changqing Jin, Dong Gao, Gang Xu, Zengyun Jian, Yiming Zeng, Multiferroic orders in 0.5BiFeO3-0.5Bi0.5K0.5TiO3, Ceram. Int. 2019; 45:15725~15729. (JCR 1Çø)

https://www.sciencedirect.com/science/article/pii/S0272884219310879

8) Yongxing Wei*, Chenxing Bai, Changqing Jin, Weitong Zhu, Lin Hu, Ruihua Nan, Zhonghua Dai, Frequency dispersion and temperature dependence of electrical behaviours in 0.4Bi(Ni1/2Zr1/2)O3¨C0.6PbTiO3, Ceram. Int. 2020; 46: 15297-15304 (JCR 1Çø)

https://www.sciencedirect.com/science/article/pii/S0272884220306921

9) Yongxing Wei*, Gang Xu, Changqing Jin, Yiming Zeng, Kang Yan, Siyuan Dong, Peng Li, Structure, dielectric behaviours, enhanced polarization responses and energy storage properties in (1?x)SrTiO3¨CxBi(Mg1/2Ti1/2)O3 ceramics, Appl. Phys. A 2018; 124: 862.

https://rd.springer.com/article/10.1007/s00339-018-2295-9

10) Yongxing Wei*, Changqing Jin, Pin Ye, Peng Li, Yiming Zeng, Gang Xu, Structural evolution, electrical properties and electric-field-induced changes of (0.8-x)PbTiO3-xBiFeO3-0.2BaZrO3 system near the morphotropic phase boundary, Appl. Phys. A 2017; 123: 218.

https://link.springer.com/article/10.1007%2Fs00339-016-0736-x

11) Yongxing Wei*, Changqing Jin, Yiming Zeng. Progress of relaxor multiferroic materials, J. Inorg. Mater. £¨ÎÞ»ú²ÄÁÏѧ±¨£©2017; 32:1009-1017.

http://www.jim.org.cn/article/2017/1000-324X/1000-324X-32-10-1009.shtml

12) Yongxing Wei*, Ning Zhang, Gang Xu, Changqing Jin, Lin Hu, Ling Gao, Zengyun Jian, Weitong Zhu. Low-temperature dielectric anomaly in Bi0.5K0.5TiO3, Appl. Phys. A 2019; 125:645.

https://rd.springer.com/article/10.1007/s00339-019-2930-0

13) Yongxing Wei*, Ning Zhang, Changqing Jin, Jiahao Shen, Jiahuan Xie, Zhonghua Dai, Lin Hu, Yiming Zeng, Zengyun Jian, A Bi1/2K1/2TiO3-based ergodic relaxor ceramic for temperature-stable energy storage applications, Mater. Des.2021; 207: 109887 (JCR 1Çø)

http://www.sciencedirect.com/science/article/pii/S0264127521004408

14) Chenxing Bai, Yongxing Wei*, Changqing Jin, Weitong Zhu, Zengyun Jian, Changing the polar order using different sintering methods,, Ceram. Int. 2021; 47: 19191-19197. (JCR 1Çø) https://www.sciencedirect.com/science/article/pii/S0272884221009597

15) Yongxing Wei*, Chengxing Bai, Changqing Jin, Weitong Zhu, Zengyun Jian, Ruihua Nan, Lin Hu, Zhonghua Dai, Super short-range magnetic orderings in a multiferroic relaxor ceramic 0.41Bi(Ni1/2Zr1/2)O3-0.59PbTiO3, J. Mater. Sci. 2021; 56: 11838-11846. https://link.springer.com/article/10.1007/s10853-021-06039-1

16) Yongxing Wei*, Jiahao Shen, Chenxing Bai, Changqing Jin, Weitong Zhu, Ye Tian. Zhonghua Dai, Gang Xu, Nature of polar state in 0.67BiFeO3-0.33BaTiO3, J. Mater. Sci. Mater. Electron. 2020; 21: 19266-19276. https://link.springer.com/article/10.1007/s10854-020-04462-9

 

רÀû

1¡¢ÎºÓÀÐÇ£¬ÍõÏþÀò£¬ÍõÏþÌΣ¬¼Ö½­½­£¬¸ßµç×èÂÊÌúËáîé¨CîÑËá±µ¹ÌÈÜÌå´ÅµçÌմɲÄÁϵÄÖÆ±¸·½·¨. ·¢Ã÷רÀû, ¹«¿ªºÅ: ZL2011102590160.

2¡¢ÎºÓÀÐÇ£¬ÕÅÄþ£¬½ù³¤Ç壬ìèÁÕ£¬ÄÏÈ𻪣¬¸ßÁᣬÐí¸Ú£¬Ò»ÖÖ¾ßÓÐζÈÎȶ¨ÐÔµÄBKT»ù´¢Äܵç½éÖʲÄÁϼ°ÆäºÏ³É·½·¨·¢Ã÷רÀû£¬¹«¿ªºÅ£ºZL2020104982527.

3¡¢ÎºÓÀÐÇ£¬ãÆ¿¡Áú£¬½ù³¤Ç壬ÕÅ»ªÎ°£¬ìèÁÕ£¬ÄÏÈ𻪣¬¸ßÁᣬһÖ־߱¸³¬¸ßѹµç³£ÊýµÄ³ÚÔ¥ÌúµçÌåPNN-PHT²ÄÁϵÄÖÆ±¸·½·¨. ·¢Ã÷רÀû£¬¹«¿ªºÅ£ºZL 2022108446655¡£

 

Êý¾Ý±ê×¼

0.67BF-0.33BTµÄ·ÛÄ©ÑÜÉäÊý¾Ý¼°ÏàÓ¦PDF¿¨Æ¬ £¨¹ú¼ÊÑÜÉäÊý¾ÝÖÐÐÄICDDÊý¾Ý¿â£©

 

½±Àø

1¡¢J Am Ceram Socǰ10%×î´óÏÂÔØÁ¿ÂÛÎĽ±£¬ÃÀ¹úÌÕ´Éѧ»á£¬2021.

2¡¢ÉÂÎ÷Ê¡¸ßУ¿ÆÑ§¼¼Êõ½±£¬ÉÂÎ÷Ê¡½ÌÓýÌü£¬Ìúµç²ÄÁϵĴ¢ÄÜ¡¢Ñ¹µçÐÔÄÜÓÅ»¯¼°»úÀíÑо¿£¬¶þµÈ½±£¬2/5, 2022.

3¡¢ÉÂÎ÷Ê¡¸ßУ¿ÆÑ§¼¼Êõ½±£¬ÉÂÎ÷Ê¡½ÌÓýÌü£¬ÆøÃôÓë¹â´ß»¯ZnO»ù¹¦ÄܲÄÁϱíÃæÈ±Ïݼ°½çÃæ½á¹¹µ÷¿Ø»úÀí£¬¶þµÈ½±£¬5/10, 2019.

 

½ð±ÌÈð

»ù±¾ÐÅÏ¢

½ð±ÌÈð  ¹¤Ñ§²©Ê¿  Ð£Æ¸¸±½ÌÊÚ   Ë¶Ê¿Éúµ¼Ê¦

ÓÊÏ䣺jinbirui@xatu.edu.cnÊÐδÑë´óѧ³Çѧ¸®Öз2

½ÌÓý¾­Àú


2013-2018 Î÷°²½»Í¨´óѧ   ²ÄÁÏ¿ÆÑ§Ó빤³Ì ¹¤Ñ§²©Ê¿

2011-2013 Î÷°²½»Í¨´óѧ   ²ÄÁϹ¤³Ì   ¹¤Ñ§Ë¶Ê¿

2007-2011 Î÷°²½»Í¨´óѧ   ¹ý³Ì×°±¸Óë¿ØÖÆ¹¤³Ì  ¹¤Ñ§Ñ§Ê¿


¹¤×÷¾­Àú

2019-ÖÁ½ñ£º²»ÏÞip×¢²áËÍ37Ôª½ð±Ò ²»ÏÞip×¢²áËÍ37Ôª½ð±Ò£¬Ð£Æ¸¸±½ÌÊÚ 

Ñо¿·½Ïò

Õë¶Ô¸öÌ彡¿µ¹ÜÀíµÄ¹ú¼ÒÖØ´óÐèÇó£¬×ñÑ­¡°»ù´¡ÀíÂÛ-¼¼Êõ¿ª·¢-Ó¦ÓÃÍÆ¹ã¡±µÄѧÊõ˼·£¬½»²æÈÚºÏÁ÷Ìå/¹ÌÌåÁ¦Ñ§¡¢²ÄÁÏѧ¡¢ÉúÎïҽѧµÈѧ¿ÆÖªÊ¶£¬¿ªÕ¹ÓÃÓÚÉúÀíÖ¸±ê¡¢¼²²¡±êÖ¾ÎïµÄÉúÎï´«¸ÐÆ÷¿ª·¢Ó¦ÓÃÑо¿£¬²¢½«³É¹ûÓ¦ÓÃÓÚ½â¾ö½¡¿µ¼à²â¡¢Âý²¡¹ÜÀíµÈÁÙ´²Ó¦ÓÃÖÐÃæÁÙµÄʵ¼ÊÌôÕ½¡£Ö÷ÒªÑо¿·½ÏòÈçÏ£º

1.Ó«¹âÉúÎï´«¸ÐÆ÷µÄ¿ª·¢¼°ÓÅ»¯£»

2.Êý×ÖPCRºËËá¼ì²âƽ̨¿ª·¢¼°ÓÅ»¯£»

3.¿É´©´÷É豸¼°Ô˶¯ÉúÀíÑо¿¡£

´ú±íÐÔÂÛÎĺÍרÀû

11. B. Jin, Z. Du, J. Ji, Y. Bai, D. Tang, L. Qiao, J. Lou, J. Hu, Z. Li, Regulation of probe density on upconversion nanoparticles enabling high-performance lateral flow assays, Talanta 256 (2023) 124327.

10. G. Zhao, H. Zhou, G. Jin, B. Jin, S. Geng, Z. Luo, Z. Ge, F. Xu, Rational design of electrically conductive biomaterials toward excitable tissues regeneration, Progress in Polymer Science 131 (2022) 101573.

9. B. Jin, Z. Du, C. Zhang, Z. Yu, X. Wang, J. Hu, Z. Li, Eu-Chelate Polystyrene Microsphere-Based Lateral Flow Immunoassay Platform for hs-CRP Detection, Biosensors 12(11) (2022) 977.

8. B. Jin, Z. Li, G. Zhao, J. Ji, J. Chen, Y. Yang, R. Xu, Upconversion fluorescence-based paper disc for multiplex point-of-care testing in water quality monitoring, Analytica Chimica Acta 1192 (2022) 339388.

7. Y. Bai, J. Ji, F. Ji, S. Wu, Y. Tian, B. Jin*, Z. Li, Recombinase polymerase amplification integrated with microfluidics for nucleic acid testing at point of care, Talanta 240 (2022) 123209.

6. J. Hu, K. Xiao, B. Jin, X. Zheng, F. Ji, D. Bai, Paper-based point-of-care test with xeno nucleic acid probes, Biotechnol Bioeng 116(10) (2019) 2764-2777.

5. Y. Gong, Y. Zheng, B. Jin, M. You, J. Wang, X. Li, M. Lin, F. Xu, F. Li, A portable and universal upconversion nanoparticle-based lateral flow assay platform for point-of-care testing, Talanta 201 (2019) 126-133.

4. B. Jin, Y. Yang, T. Lu, F. Xu, M. Lin, Lateral flow aptamer assay for detection of aflatoxin B1 in tea using upconversion nanoparticles, SCIENTIA SINICA Chimica 49(2) (2018) 353-359.

3. B. Jin, Y. Yang, R. He, Y.I. Park, A. Lee, D. Bai, F. Li, T.J. Lu, F. Xu, M. Lin, Lateral flow aptamer assay integrated smartphone-based portable device for simultaneous detection of multiple targets using upconversion nanoparticles, Sensors and Actuators B: Chemical 276 (2018) 48-56.

2. B. Jin, S. Wang, M. Lin, Y. Jin, S. Zhang, X. Cui, Y. Gong, A. Li, F. Xu, T.J. Lu, Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection, Biosens Bioelectron 90 (2017) 525-533.

1. B. Jin, M. Lin, Y. Zong, M. Wan, F. Xu, Z. Duan, T. Lu, Microbubble embedded with upconversion nanoparticles as a bimodal contrast agent for fluorescence and ultrasound imaging, Nanotechnology 26(34) (2015) 345601.

 

5. ÌáÉýÓ«¹â΢ÇòÉúÎï̽Õë¼ì²âÁéÃô¶ÈµÄµ÷¿Ø·½·¨£¬2022-9-5£¬Öйú£¬202211175555.0

4. Cµ°°×¼ì²âÊÔÖ½µÄÖÆ±¸·½·¨¼°ÕÆÉÏʽ¶ÁȡװÖã¬2021-10-14£¬Öйú£¬202111197562.6

3.Ò»ÖÖ»ùÓÚÉÏת»»Ó«¹â¹²ÕñÄÜÁ¿×ªÒƵĿìËÙϸ¾ú¼ì²â·½·¨, 2019-12-24, Öйú, 201610422520.0

2.Ò»ÖÖ¶àÄ¿±êÎïµúʽ²àÁ÷ÊÔֽоƬ¼°Æä¼¤¹âÇиîÖÆ±¸·½·¨¡¢Ê¹Ó÷½·¨¡¢Ó¦Óúͼì²â×°ÖÃ, 2018-7-25, Öйú, 201810827125X

1. Ò»ÖÖ»ùÓÚÉÏת»»Ó«¹âÊÊÅäÌåµÄ²àÁ÷ÊÔÖ½¼ì²â·½·¨, 2017-12-27, Öйú, 201711449937.7

 

ÆäËû

¿ÎÌâ×éÓëÎ÷°²½»Í¨´óѧ´óѧ·ÂÉúѧ¼°ÉúÎïÁ¦Ñ§Ñо¿Ëù¡¢ËÕÖݵÞÒò°²ÉúÎï¿Æ¼¼ÓÐÏÞ¹«Ë¾¿ªÕ¹ÃÜÇкÏ×÷£¬ÌṩÁªºÏÅàÑø¼°ÊµÏ°»ú»á£¬»¶Ó­Ë¶Ê¿Ñо¿Éú±¨¿¼¡£

 


ÄÏÈð»ª

»ù±¾ÐÅÏ¢

ÐÕÃû:  ÄÏÈ𻪠                                                                ³öÉúÄêÔ£º1978.10

ѧÀú:  Ñо¿Éú                                                                 Ñ§Î»£º¹¤Ñ§²©Ê¿

Ö°³Æ:  ¸±½ÌÊÚ                                                     `          Ö°Îñ£ºÎÞ

ѧԺ:  ²»ÏÞip×¢²áËÍ37Ôª½ð±Ò                                                 ÁªÏµ·½Ê½£ºnanrh@xatu.edu.cn

ѧϰ¾­Àú

2007ÄêÖÁ2013Ä꣺Î÷±±¹¤Òµ´óѧ  ²ÄÁÏѧԺ£¬²ÄÁÏѧ             ²©Ê¿

2002ÄêÖÁ2005Ä꣺Î÷°²Àí¹¤´óѧ  ²ÄÁÏѧԺ£¬²ÄÁÏÎïÀíÓ뻯ѧ     Ë¶Ê¿

1998ÄêÖÁ2002Ä꣺Î÷°²Àí¹¤´óѧ  ²ÄÁÏѧԺ£¬²ÄÁÏ¿ÆÑ§Ó빤³Ì  Ñ§Ê¿

¹¤×÷¾­Àú

2005ÄêÖÁ2007Ä꣺Î÷°²µç´ÉÑо¿Ëù£¬¼¼ÊõÈËÔ±

2013ÄêÖÁ2019Ä꣺²»ÏÞip×¢²áËÍ37Ôª½ð±Ò£¬½²Ê¦

2019ÄêÖÁ½ñ£º²»ÏÞip×¢²áËÍ37Ôª½ð±Ò£¬¸±½ÌÊÚ

ÕÐÉúÐÅÏ¢

ÿÄêÕÐÊÕ˶ʿÉú2-3Ãû¡£

½ÌÓý½Ìѧ

ËùÊôÍŶÓ£º

1.²»ÏÞip×¢²áËÍ37Ôª½ð±ÒÄý¹ÌÀíÂÛÓ빦ÄܲÄÁÏ¿ÆÑд´ÐÂÍŶӣ¨2010£©

2. Ê¡¼¶²ÄÁÏÎïÀí½ÌѧÍŶӣ¨2013£©

3. Ê¡¼¶¾«Æ·×ÊÔ´¹²Ïí¿Î³Ì¡¶Ò±½ð´«ÊäÔ­Àí¡·½ÌѧÍŶӣ¨2015£©

Ö÷½²¿Î³Ì£º

²ÄÁÏ¿ÆÑ§»ù´¡£¬ÎïÀí»¯Ñ§£¬ÆÕͨ»¯Ñ§

½Ìѧ»ñ½±£º

1. °ëµ¼Ìåµ¥¾§ÖƱ¸Óë·¢Õ¹£¬2022Äê²»ÏÞip×¢²áËÍ37Ôª½ð±Ò¿Æ½ÌÈÚºÏÓÅÐã°¸ÀýÈýµÈ½±£¬2022.09, 1/1

2. »ùÓÚOBE½ÌÓýÀíÄîµÄ²ÄÁÏ¿ÆÑ§»ù´¡½Ìѧģʽ¸Ä¸ï£¬²»ÏÞip×¢²áËÍ37Ôª½ð±Ò½Ìѧ³É¹û¶þµÈ½±£¬2019.07£¬2/5

3. ¿ÆÑ§Ñо¿·¶Ê½ÔÚ²ÄÁÏ¿ÆÑ§Ó빤³Ì±¾¿Æ×¨Òµ»ù´¡¿Î½ÌѧÖеÄÇ¨ÒÆÈںϣ¬²»ÏÞip×¢²áËÍ37Ôª½ð±Ò½Ìѧ³É¹û¶þµÈ½±£¬2019.07£¬3/5

Ñо¿·½Ïò

1. Äý¹ÌÓë¾§ÌåÉú³¤¼¼Êõ

2. II-VI×廯ºÏÎï°ëµ¼Ìå¾§Ìå²ÄÁÏÓëÆ÷¼þ

3. Óлú-ÎÞ»úÔÓ»¯¸ÆîÑ¿ó¾§Ìå²ÄÁÏÓëÆ÷¼þ

¿ÆÑÐÏîÄ¿

1. ¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ð£¨51502234£©£ºCdZnTe¾§ÌåµÄµãȱÏݼ°¸ßµç×è»úÖÆÑо¿£¬Ö÷³Ö£¬2016.01-2018.12£¬23.88ÍòÔª£»

2. ÉÂÎ÷Ê¡×ÔÈ»¿ÆÑ§»ù´¡Ñо¿¼Æ»®£¨2018JM5097£©£ºÎ¢¹ÛȱÏݵ÷¿ØÏÂ̽²âÆ÷ÓÃíÚ»¯ïÓ»ù¾§Ìå²ÄÁϵÄÉú³¤¼°µçѧÐÔÄÜÑо¿£¬Ö÷³Ö£¬2018.01-2019.12£¬3ÍòÔª£»

3. Äý¹Ì¼¼Êõ¹ú¼ÒÖØµãʵÑéÊÒ¿ª·Å»ù½ð£¨SKLSP201410£©£ºCdZnTe¾§ÌåµÄµãȱÏÝÑо¿¼°¶Ô¹âµçÐÔÄܵÄÓ°Ï죬Ö÷³Ö£¬2014.07-2016.07£¬6ÍòÔª£»

4.  ***·¢Õ¹²¿×°±¸Ô¤ÏÈÑо¿ÁìÓò»ù½ð£¨809***501£©£º***ѹµç***Ñо¿£¬²ÎÓ룬2021.12-2022.05£¬50ÍòÔª£»

5. ¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ð£¨51602242£©£ºµãȱÏݵ÷¿ØµÄPSN-PMN-PT³ÚÔ¥Ìúµçµ¥¾§¾§¸ñ½á¹¹¡¢µç³ëÓ뼫ÐÔÆ£ÀÍÑо¿£¬²ÎÓ룬2017.01-2019.12£¬18ÍòÔª£»

6. ¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ð£¨11404251£©£ºÆøÃô½ðÊôÑõ»¯Îï°ëµ¼ÌåÄÉÃ×Çò¿ÇµÄÖÆ±¸ºÍµçÊäÔ˵÷¿Ø£¬²ÎÓ룬2015.01-2017.12£¬30ÍòÔª£»

7. ¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ð£¨61274081£©£ºÉîÄܼ¶ÏÝÚå¶ÔCdZnTe¾§ÌåµçѧÐÔÄܼ°·øÉä̽²âÆ÷ÐÔÄܵÄÓ°Ï죬²ÎÓ룬2013.01-2016.12£¬85ÍòÔª£»

8. ÉÂÎ÷Ê¡×ÔÈ»¿ÆÑ§»ù´¡Ñо¿¼Æ»®£¨2019JM-414£©£ºÄÉÃ×ÒìÖʽáÇò¿ÇÔÚ¹â´ß»¯½µ½âÖйâÉúÔØÁ÷×Ó·ÖÀëÓëÇ¨ÒÆÄÜÁ¦µÄµ÷¿Ø£¬2019.01-2020.12£¬3ÍòÔª£»

9. ÉÂÎ÷Ê¡×ÔÈ»¿ÆÑ§»ù´¡Ñо¿¼Æ»®£¨2015JQ5142£©£º³ß´çЧӦºÍ¾§ÌåȱÏݶÔBi»ùÌúµç²ÄÁϹâ´ß»¯ÐÔÄܵÄÓ°Ïì»úÖÆÑо¿£¬²ÎÓ룬2015.01-2016.12£¬3ÍòÔª¡£

ѧÊõ³É¹û

1. ´ó³ß´ç¸ßÖÊÁ¿CH3NH3PbCl3¸Æîѿ󵥾§µÄÉú³¤»úÀí¡¢Ïàת±äÓë¹âѧÐÔÄÜ, ÎïÀíѧ±¨(Acta Physica Sinica), 2023, 72(13): 138101, µÚÒ»×÷Õß

2. Step-controlled growth of MAPbBr3 single crystal and temperature-dependent variations of MA+ cations during nonphase transition, Materials Science in Semiconductor Processing, 2021, 135: 106107, ͨѶ×÷Õß

3. Defect step controlled growth of perovskite MAPbBr3 single crystal, Journal of Materials Science, 2019, 54: 11596-11603, ͨѶ×÷Õß

4. Distribution of microscopic defects in Al-doped CdZnTe, Journal of Materials Science, 2018, 53: 4387¨C4394, µÚÒ»×÷Õß

5. Macroscopic effects and microscopic origins of gamma-ray irradiation on In-doped CdZnTe crystal, Journal of Materials Science: Materials in Electronics, 2018, 29: 20462¨C20469, µÚÒ»×÷Õß

6. CdZnTeÏñËØÌ½²âÆ÷µÄµçÊäÔËÐÔÄÜ, ÎïÀíѧ±¨(Acta Physica Sinica), 2017, 66(20): 206101, µÚÒ»×÷Õß

7. Compensation processes in high-resistivity CdZnTe crystals doped with In/Al, Journal of Crystal Growth, 2016, 451: 150¨C154, µÚÒ»×÷Õß

8. Relationship between high resistivity and the deep level defects in CZT:In, Nuclear Instruments and Methods in Physics Research Section A, 2013, 705: 32-35, µÚÒ»×÷Õß

9. Thermally stimulated current spectroscopy applied on de-fect characterization in semi-insulating Cd0.9Zn0.1Te, Journal of Crystal Growth, 2012, 361: 25-29, µÚÒ»×÷Õß

10. Irradiation-Induced Defects in Cd0.9Zn0.1Te:Al, Journal of Electronic Materials, 2012, 41: 3044-3049, µÚÒ»×÷Õß

11. Determination of trap levels in CZT:In by thermally stimulated current spectroscopy, Transactions of Nonferrous Metals Society of China, 2012, 22: s148-s152, µÚÒ»×÷Õß

12. Investigation on defect levels in CdZnTe:Al using ther-mally stimulated current spectroscopy, Journal of Physics D: Ap-plied Physics, 2010, 43: 345104, µÚÒ»×÷Õß

13. The electrical properties and defect levels of Al doped CdZnTe crystal for detector applications, Proceeding of SPIE, 2009, 7385: 73850U1-73850U7, µÚÒ»×÷Õß

14. ÄÏÈð»ª, Îä´ºÑà, Íõºã, ÕÅêØ, ½ù³¤ÇåµÈ, Ò»ÖÖ¾ßÓÐÔñÓÅÈ¡ÏòµÄ´ó³ß´ç¸ßÖÊÁ¿·øÉä̽²âÆ÷Óüװ·»ù½ðÊô±»¯Îï¸Æîѿ󵥾§¼°ÆäÖÆ±¸·½·¨, 2023.04, ·¢Ã÷רÀû: ZL202210418717.2

15. ÄÏÈð»ª, Íõºã, Éêºìϼ, Íõ¼ª, ìèÁÕµÈ, Ò»ÖÖÏ¡ÍÁ²ôÔÓ·øÉä̽²âÆ÷ÓÃË«Â±ËØÔÓ»¯¸ÆîÑ¿ó¾§Ìå²ÄÁϼ°ÆäÖÆ±¸·½·¨, 2021.12, ·¢Ã÷רÀû: ZL202110243322.9

16. κÓÀÐÇ, ãÆ¿¡Áú, ½ù³¤Çå, ÕÅ»ªÎ°, ìèÁÕ, ÄÏÈ𻪵È, Ò»Ö־߱¸³¬¸ßѹµç³£ÊýµÄ³ÚÔ¥ÌúµçÌåPNN-PHTµÄºÏ³É·½·¨, 2023.04,·¢Ã÷רÀû: ZL202210844665.5

17. ÎºÓÀÐÇ, ÕÅÄþ, ½ù³¤Çå, ìèÁÕ, ÄÏÈ𻪵È, Ò»ÖÖ¾ßÓÐζÈÎȶ¨ÐÔµÄBKT»ù´¢Äܵç½éÖʲÄÁϼ°ÆäºÏ³É·½·¨, 2021.12, ·¢Ã÷רÀû: ZL202010498252.7

18. Ðí¸Ú, ¹ùÑ×·É, ¹ÈÖÇ, ÄÏÈð»ª, Àî¸ßºêµÈ, Ò»Öֶྦྷµâ»¯¹¯±¡Ä¤×Ѿ§²ãµÄÖÆ±¸·½·¨, 2016.05, ·¢Ã÷רÀû: ZL201410082226.0

19. ·øÉä̽²âÆ÷ÓÃXλȡ´úMAPbBr3¸Æîѿ󵥾§µÄÉú³¤ÓëÓ¦ÓÃ, ÉÂÎ÷Ê¡µÚÁù½ìÑо¿Éú´´Ð³ɹûÕ¹ÈýµÈ½±£¬2022.12, 1/2£¨µÚÒ»Ö¸µ¼½Ìʦ£©

20. ·øÉä̽²âÓõ⻯¹¯¾§Ì寸Ïà·¨ºÍÈÜÒº·¨Éú³¤»úÀíÑо¿£¬ÉÂÎ÷Ê¡¸ßµÈѧУ¿ÆÑ§¼¼Êõ½±¶þµÈ½±£¬2018.03£¬5/8

 

ÕÔ³½Ðñ

»ù±¾ÐÅÏ¢

ÐÕÃû£ºÕÔ³½Ðñ

ѧÀú£º²©Ê¿

רҵ£º²ÄÁÏѧ

Ö°³Æ£º½²Ê¦

ÉúÈÕ£º1988-11-24

ÓÊÏ䣺zhaochenxu@xatu.edu.cn

 

ѧϰ¾­Àú

2015.09¡ª2019.12  ¼ªÁÖ´óѧ  ²ÄÁÏ¿ÆÑ§Ó빤³ÌѧԺ ÄÜÔ´²ÄÁÏ ¹¤Ñ§²©Ê¿Ñ§Î»

2012.09¡ª2015.06  ¼ªÁÖ´óѧ  ²ÄÁÏ¿ÆÑ§Ó빤³ÌѧԺ ÄÜÔ´²ÄÁÏ ¹¤Ñ§Ë¶Ê¿Ñ§Î»

 

¹¤×÷¾­Àú

2020.08¡ªÖÁ½ñ  ²»ÏÞip×¢²áËÍ37Ôª½ð±Ò ²»ÏÞip×¢²áËÍ37Ôª½ð±Ò  ½²Ê¦

 

Ñо¿·½Ïò

±¾ÈËÑо¿µÄ¿ÎÌâ·½ÏòÖ÷ÒªÓÐCO2µç»¹Ô­¡¢µç»¯Ñ§ºÏ³É°±¡¢ÆøÌåµÄ²¶»ñÓë·ÖÀë¡¢¶èÐÔÆøÌå»î»¯µÈ¡£Ä¿Ç°ÒÔµÚÒ»×÷Õß»òͨѶ×÷ÕßÔÚJournal of Materials Chemistry A¡¢Materials Today Physics¡¢Journal of Physical Chemistry C¡¢Physical Chemistry Chemical Physics¡¢Chinese Chemical LettersµÈ¹ú¼ÊÖªÃûSCIÆÚ¿¯·¢±íÂÛÎÄ10ÓàÆª²¢ÓÚ2022ÄêÖ÷³ÖÁËÉÂÎ÷Ê¡¿Æ¼¼ÌüÇàÄêÏîÄ¿¡£ÖصãµÄÑо¿³É¹û°üÀ¨ÒÔÏÂÄÚÈÝ£º½¨Á¢ÁËCO2µç»¹Ô­Éú³ÉHCOOH µÄ³ÉÊìÀíÂÛÄ£ÐÍ£¬¸ÃÄ£ÐÍÔÚǰÈ˵ÄÑо¿»ù´¡ÉϽøÒ»²½²ûÃ÷ÁËÔڵ绯ѧÌõ¼þϼÓÈë½ðÊôÀë×Ó³¡ÒÔºó»úÖÆÊÇÈçºÎ·¢Éú¸Ä±äµÄ¡£Í¬Ê±£¬Í¨¹ýÉè¼ÆÐÂÐ͵ĻùÓÚ¶þάInSe µÄµ¥½ðÊô´ß»¯¼Á£¬·¢ÏÖ¼´Ê¹Ôڳߴç´ó·ù¶È½µµÍµÄÌõ¼þÏ£¬´«Í³ÀíÂÛÓëÐÂÌåϵ֮¼äÈÔÈ»´æÔÚÓжàÖÖ½»²æµã£¬ÒÔ´Ë·¢ÏÖÁËÐí¶à¹æÂÉÐԵĽáÂÛ£¬´Ó¶øÊµÏÖ×îÓÅ´ß»¯¼Á¿ìËÙɸѡ¹¤×÷¡£ÏµÍ³Ñо¿ÁËCOÔÚ¶þάInSe-µ¥½ðÊôÔ­×Ó¸´ºÏÌåϵ±íÃæµÄÎü¸½ÐÔÖÊ£¬Ïêϸ²ûÃ÷Á˵çºÉ×ªÒÆÊý~Îü¸½ÄÜ~µç×ӽṹ¼äµÄñîºÏ¹ØÏµ¡£´ËÍ⻹Ìá³öÁËÒ»ÖÖ»ùÓÚ¼Ûµç×ÓÊýÓëµç¸ºÐÔµÄÃèÊö·û£¬·¢ÏÖÕâÖÖÃèÊö·ûÓëÎü¸½ÄÜÖ®¼äÄܹ»ÄâºÏ³öÁ¼ºÃµÄÏßÐÔ¹ØÏµ£¬²¢Äܹ»×¼È·Ô¤²â´ß»¯»îÐÔ£¬ÇÒ¿ÉÒÔÓÐÐ§ÍÆ¹ãµ½¶àÖÖÁìÓòÓë¶àÖÖÌåϵ֮ÖС£´ËÍ⣬»¹ÒÀÍжþάInSe Óë¶þάBC3N2»ùµ××ÅÖØÑо¿ÁËCO2µÄÎü¸½Óë»î»¯ÎÊÌâ¡£Ïêϸ²ûÃ÷ÁËCO2Óë»ùµ×Ö®¼äµÄÔÓ»¯Äܼ¶Ëæµç³¡µÄ±ä»¯¹æÂÉ£¬Í¬Ê±»¹ÒÔ»ùµ×Èȵ¼ÂÊ×÷ΪÇÅÁº£¬ËµÃ÷ÁËCO2µÄ²¶»ñÓë»î»¯ÐÔÄÜÖ®¼äµÄ±çÖ¤¹ØÏµ£¬ÎªCO2µç»¹Ô­´ß»¯¼ÁµÄÉè¼Æµì¶¨ÁËÀíÂÛ»ù´¡¡£

 

¿ÆÑÐÏîÄ¿

(1) ¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðίԱ»á, ÃæÉÏÏîÄ¿, 11974128, ÄÉÃ׳߶ÈϹö¶¯ºÍ»¬¶¯Ä¦²ÁµÄ²îÒìÑо¿, 2020-01-01 ÖÁ 2023-12-31, 63ÍòÔª, ÔÚÑÐ, ²ÎÓë

(2) ÉÂÎ÷Ê¡¿Æ¼¼Ìü, Ò»°ãÏîÄ¿-ÇàÄêÏîÄ¿, 2022JQ-096, ±ä¼ÛCuºÏ½ð±¡Ä¤µç´ß»¯»¹Ô­CO2Éú³ÉC2H4»úÀíµÄÑо¿, 2022-01 ÖÁ 2023-12, 5ÍòÔª, ÔÚÑÐ, Ö÷³Ö

 

 

´ú±íÐÔÂÛÖø

(1) Chenxu Zhao; Guoxu Zhang; Wang Gao*; Qing Jiang*; Single metal atoms regulated flexibly by a 2D InSe substrate for CO2 reduction electrocatalysts, Journal of Materials Chemistry A, 2019, 7(14): 8210-8217 (ÆÚ¿¯ÂÛÎÄ)

(2) Chenxu Zhao; Menghui Xi; Jingrong Huo; Chaozheng He*; Ling Fu*; Electro-reduction of N2 on nanostructured materials and the design strategies of advanced catalysts based on descriptors, Materials Today Physics, 2022, 22: 100609 (ÆÚ¿¯ÂÛÎÄ)

(3) Chenxu Zhao; Wang Gao*; Qing Jiang*; Scheme for Screening O2 Reduction Electrocatalysts: From Pure Metals and Alloys to Single-Atom Catalysts, The Journal of Physical Chemistry C, 2020, 124(46): 25412-25420 (ÆÚ¿¯ÂÛÎÄ)

(4) Chenxu Zhao; Yifan Bu; Wang Gao*; Qing Jiang*; CO2 Reduction Mechanism on the Pb(111) Surface: Effect of Solvent and Cations, The Journal of Physical Chemistry C, 2017, 121(36): 19767-19773 (ÆÚ¿¯ÂÛÎÄ)

(5) Chenxu Zhao; Menghui Xi; Jinrong Huo; Chaozheng He*; B-Doped 2D-InSe as a bifunctional catalyst for CO2/CH4 separation under the regulation of an external electric field, Physical Chemistry Chemical Physics, 2021, 23(40): 23219-23224 (ÆÚ¿¯ÂÛÎÄ)

 

ÕÔ»½ÇÙ

»ù±¾ÐÅÏ¢

ÐÕÃû£ºÕÔ»½ÇÙ              ³öÉúÄêÔ£º1989Äê10ÔÂ

ѧÀú£ºÑо¿Éú              Ñ§Î»£º²©Ê¿

Ö°³Æ£º¸±½ÌÊÚ              Ñ§Ôº£º²»ÏÞip×¢²áËÍ37Ôª½ð±Ò

רҵ£ºÎÞ»ú·Ç½ðÊô²ÄÁÏϵ   ÓÊÏ䣺huan242qin@163.com

½ÌÓý¼°¹¤×÷¾­Àú

2017Äê4ÔÂ-2021Äê4Ô   ÄϾ©º½¿Õº½Ìì´óѧ ²ÄÁÏ¿ÆÑ§Ó빤³ÌѧԺ ¹¤Ñ§²©Ê¿

2018Äê10ÔÂ-2020Äê7Ô  ÄϾ©´óѧÁªºÏÅàÑø²©Ê¿

2021Äê5ÔÂ-ÖÁ½ñ          ²»ÏÞip×¢²áËÍ37Ôª½ð±Ò   ²»ÏÞip×¢²áËÍ37Ôª½ð±Ò  ¸±½ÌÊÚ

Ñо¿·½Ïò

1. µç´Å²¨ÎüÊÕ²ÄÁÏ  

2. µç´ÅÆÁ±Î²ÄÁÏ

3. ÉúÎïÖÊÑÜÉú½á¹¹²ÄÁÏ     

4. ÄÉÃ׸´ºÏ²ÄÁÏ

ÕÐÉúÐÅÏ¢

ÿÄêÕÐÊÕ1-2Ãû˶ʿÑо¿Éú

¿ÆÑÐÏîÄ¿

1. ¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÇàÄêÏîÄ¿£¨No. 52302110£©£¬¶¨Ïò¶àͨµÀÈýάÓÐÐòµ¼µçÍøÂçµÄ¹¹Öþ¼°Æä¿íƵÎü²¨»úÖÆÑо¿£¬2024-01ÖÁ2026-12£¬30ÍòÔª£¬ÔÚÑУ¬Ö÷³Ö

2. »ñÅúÉÂÎ÷Ê¡È˲ÅÒý½ø¼Æ»®ÏîÄ¿£¬ÔÚÑУ¬Ö÷³Ö

3. ÉÂÎ÷Ê¡½ÌÓýÌüרÏî¿ÆÑмƻ®ÏîÄ¿£¨No.2022JQ-322£©ÉúÎïÖÊÑÜÉú³¬±¡¶þά¶à¿×̼ÄÉÃׯ¬/FeCo´ÅµçÒìÖʸ´ºÏÎü²¨²ÄÁϹ¹Öþ¼°ÎüÊÕ»úÀíÑо¿£¬2022-01ÖÁ2023-12, 5ÍòÔª£¬ÔÚÑУ¬Ö÷³Ö

4. ²»ÏÞip×¢²áËÍ37Ôª½ð±Ò¿ÆÑÐÆô¶¯ÏîÄ¿£¨No.0853-302020646£©£¬2021.05-2024.05, 25ÍòÔª,ÔÚÑУ¬Ö÷³Ö

 

ÈÙÓþ»ñ½±

²»ÏÞip×¢²áËÍ37Ôª½ð±Ò:1. ÈÙ»ñ2022Äê¶ÈÖйúº½¿Õѧ»áÓÅÐ㲩ʿѧλÂÛÎĽ±

ѧÊõ³É¹û

1. H.Q. Zhao*, C.Q. Jin, X. Yang, P. Lu, Y. Cheng, Synthesis of a one-dimensional carbon nanotube-decoratedthree-dimensional crucifix carbon architecture embedded with Co7Fe3/Co5.47N nanoparticles for high-performance microwave absorption. Journal of Colloid and Interface Science, 2023, 645, 22¨C32. (ÖпÆÔº´óÀàÒ»Çø£¬ IF= 9.965)

2. H.Q. Zhao*, X. Yang, C.Q. Jin, , M.R. Li, Y. Cheng, Synthesis of porous carbon nanoparticles anchored on MnO nanosheets for enhanced microwave absorption. Ceramics International, 2023, 49, 35982-35990. (ÖпÆÔº´óÀàÒ»Çø£¬IF= 5.2)

3. H.Q. Zhao*, C.Q. Jin, P. Lu, Z.M. Xiao, Y. Cheng, Biomass-derived ultralight superior microwave absorber Towards X and Ku bands. Journal of Colloid and Interface Science, 2022, 626, 13¨C22. (ÖпÆÔº´óÀàÒ»Çø£¬IF= 9.965)

4. H.Q. Zhao*, C.Q. Jin, P. Lu, Z.M. Xiao, Y. Cheng, Anchoring well-dispersed magnetic nanoparticles on biomass-derived 2D porous carbon nanosheets for lightweight and efficient microwave absorption. Compos. Part A-Appl. Sci. Manuf. 2022, 154, 106773. (ÖпÆÔº´óÀàÒ»Çø£¬IF= 9.463)

5. H.Q. Zhao, Y. Cheng, Z. Zhang, B.S. Zhang, C.C. Pei, F. Y. Fan, G.B. Ji, Biomass-derived graphene-like porous carbon nanosheets towards ultralight microwave absorption and excellent thermal infrared properties. Carbon, 2021, 173  501-511. (ÖпÆÔº´óÀàÒ»Çø£¬IF= 11.307, ESI¸ß±»ÒýÂÛÎÄ)

6. H.Q. Zhao, Y. Cheng, Z. Zhang, J.W. Yu, J. Zheng, M. Zhou, L. Zhou, B.S. Zhang, G.B. Ji. Rational design of core-shell Co@C nanotubes towards lightweight and highefficiency microwave absorption. Composites Part B: Engineering, 2020, 196, 108119. (ÖпÆÔº´óÀàÒ»Çø£¬ IF=11.322)

7. H.Q. Zhao, Y. Cheng, W. Liu, L.J. Yang, B.S. Zhang, L. Wang, G.B. Ji, Z.C. Xu. Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett., 2019, 11, 24. (ÖпÆÔº´óÀàÒ»Çø£¬ IF=23.655£¬ESI¸ß±»ÒýÂÛÎÄ)

8. H.Q. Zhao, Y. Cheng, G.B. Ji, Y.W. Du. A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon, 2019, 142, 245-253. (ÖпÆÔº´óÀàÒ»Çø£¬IF=11.307,  ESI¸ß±»ÒýÂÛÎÄ)

9. H.Q. Zhao, Y. Cheng, J.N. Ma, Y.N. Zhang, G.B. Ji, Y. Du. A sustainable route from biomass cotton to construct lightweight and high-performance microwave absorber. Chem. Eng. J., 2018, 33, 432-441. (ÖпÆÔº´óÀàÒ»Çø£¬IF=16.744,  ESI¸ß±»ÒýÂÛÎÄ)

10. H.Q. Zhao, Y. Cheng, B.S. Zhang, G.B. Ji, Y.W. Du. Achieving sustainable ultralight electromagnetic absorber from flour by turning surface morphology of nanoporous carbon. ACS Sustain. Chem. Eng., 2018, 11, 15850-15857. (ÖпÆÔº´óÀàÒ»Çø£¬IF=9.224)

11. H.Q. Zhao, Y. Cheng, Y.N. Zhang, Z. Zhang, L. Zhou, B.S. Zhang. Core-shell hybrid nanowires with Co nanoparticles wrapped in Ndoped porous carbon for lightweight microwave absorption. Dalton Trans., 2019, 48, 15263-15271. (ÖпÆÔº´óÀà¶þÇø£¬IF=4.569)

12. H.Q. Zhao, J. Z. Yeow Seow, Y. Cheng, Z.C. J. Xu, G.B. Ji. Green synthesis of hierarchically porous carbons with tunable dielectric response for microwave absorption. Ceram. Int., 2020, 46, 15447-15455. (ÖпÆÔº´óÀà¶þÇø£¬IF=5.532)

13. H.Q. Zhao, Yan Cheng, Wei Liu, Z.H. Yang, B.S. Zhang, G.B. Ji, Y.W. Du. The flaky porous Fe3O4 with tunable dimensions for enhanced microwave absorption performance in X and C bands. Nanotechnology, 2018, 29, 295603. (ÖпÆÔº´óÀàÈýÇø, IF=3.953)

14. H.Q. Zhao, Y. Cheng, X.H. Liang, Y.W. Du, G.B. Ji. Constructing Large Interconnect Conductive Networks: An Effective Approach for Excellent Electromagnetic Wave Absorption at Gigahertz. Ind. Eng. Chem. Res. 2018, 57, 2155?2164. (ÖпÆÔº´óÀà¶þÇø, IF=3.573)

 

 

 

¹ù·Æ·Æ

»ù±¾ÐÅÏ¢

ÐÕÃû£º¹ù·Æ·Æ

³öÉúÄêÔ£º1985Äê1ÔÂ

ѧÀú£º²©Ê¿Ñо¿Éú

Ö°³Æ£º¸±½ÌÊÚ

ѧԺ£º²»ÏÞip×¢²áËÍ37Ôª½ð±Ò

ÁªÏµ·½Ê½£ºguofeifei19850106@163.com

 

ѧϰ¾­Àú

2013-10ÖÁ2015-04£ºÏã¸ÛÀí¹¤´óѧ ÉúÎïҽѧ¹¤³Ìϵ ÁªºÏÅàÑø²©Ê¿

2010-09ÖÁ2015-07£º¹þ¶û±õ¹¤Òµ´óѧ ÎïÀíϵ ²©Ê¿

2008-09ÖÁ2010-07£º¹þ¶û±õ¹¤Òµ´óѧ ÎïÀíϵ ˶ʿ

2004-09ÖÁ2008-07£ºÉ½Î÷ʦ·¶´óѧ ÎïÀíϵ ѧʿ

 

¹¤×÷¾­Àú

2022-1ÖÁ½ñ£º²»ÏÞip×¢²áËÍ37Ôª½ð±Ò ¸±½ÌÊÚ

2018-12ÖÁ2021-12£º²»ÏÞip×¢²áËÍ37Ôª½ð±Ò ½²Ê¦

2018-10ÖÁ2018-12£ºÌì½òêÅÊ¢ÐÀ´´¿Æ¼¼ÓÐÏÞ¹«Ë¾ Ñз¢ÈËÔ±

2016-10ÖÁ2018-10£ºÉϺ£½»Í¨´óѧ ²ÄÁÏ¿ÆÑ§Ó빤³ÌѧԺ ²©Ê¿ºó

2015-07ÖÁ2016-10£º±±¾©Öпư±´¼¼ÊõÑо¿Ôº Ñз¢ÈËÔ±

 

ÕÐÉúÐÅÏ¢

ÿÄêÕÐÊÕ˶ʿÉú1-2Ãû

 

½ÌÓý½Ìѧ

Ö÷½²¿Î³Ì£ºÁ¿×ÓÁ¦Ñ§¡¢µç×Ó²ÄÁÏÓëÆ÷¼þ

 

Ñо¿·½Ïò

ÐÂÐͳÚÔ¥ÌúµçÌմɵĿª·¢

¸´ºÏѹµçÌմɵĿª·¢

Ö¯¹¹Ñ¹µçÌմɵĿª·¢

´ó¹¦Âʳ¬ÉùµÄÓ¦ÓÃ

Ò½Óó¬Éù»»ÄÜÆ÷µÄÑÐÖÆºÍ¿ª·¢

þºÏ½ðµÄÉùÑ§ÌØÐÔ¼°ÆäÔÚÒ½Óó¬Éù»»ÄÜÆ÷ÖеÄÓ¦ÓÃÑо¿

¿ÆÑÐÏîÄ¿

1£®  ¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÇàÄêÏîÄ¿, 11704249, ³¬Éù»»ÄÜÆ÷Éù×迹½¥±äÆ¥Åä²ãµÄÉè¼ÆÓëÐÔÄÜÑо¿, 2018-01-01 ÖÁ 2020-12-31, 30ÍòÔª, Ö÷³Ö

2£®  Öйú²©Ê¿ºó¿ÆÑ§»ù½ðÃæÉÏ×ÊÖúÏîÄ¿, 2017M621462, ¸ßƵ¾Û½¹PMN-PTµ¥¾§IVUS»»ÄÜÆ÷Æ¥Åä²ãµÄÉè¼Æ¼°ÐÔÄÜÑо¿, 2017-11 ÖÁ 2018-10, 5ÍòÔª, Ö÷³Ö

3£®  ÉÂÎ÷Ê¡¿Æ¼¼ÌüÇàÄêÏîÄ¿, 2020JQ-803, »ùÓÚÒ½Óó¬Éù»»ÄÜÆ÷µÄÐÂÐÍѹµç²ÄÁϺÍÉùÆ¥Åä²ÄÁϵÄÑо¿, 2020-01 ÖÁ2021-12, 3ÍòÔª, Ö÷³Ö

4£®  ÉÂÎ÷Ê¡½ÌÓýÌüÏîÄ¿£¬20JK0667£¬ PSN-PMN-PTµ¥¾§Ò½Óó¬Éù»»ÄÜÆ÷µÄ¿ª·¢£¬2020-01ÖÁ2021-12, 2ÍòÔª£¬ Ö÷³Ö

5£®  ²»ÏÞip×¢²áËÍ37Ôª½ð±ÒУ³¤»ù½ðÃæÉÏÅàÓýÏîÄ¿£¬ XGPY200204£¬ ÐÂÐÍï¯îÑËáǦ/Ñõ»¯Ð¿¸´ºÏѹµçÌմɸßѹµçÐÔÄܼ°µÍËðºÄÌØÐԵĻúÀíÑо¿2020-11ÖÁ2023-12£¬ 10ÍòÔª£¬ Ö÷³Ö

 

ѧÊõ³É¹û

ÂÛÎÄ

1£®  Shaokun Zhang£¨Ñ§Éú£©, Feifei Guo£¨Í¨Ñ¶×÷Õߣ©, Bo Jia, Hongqiao Zhou, Zhonghua Dai, and Zengzhe Xi, Effect of Li2CO3 on structure and electrical properties of low-temperature-sintered 15PSN-52PMN-33PT ceramics, Journal of Materials Science: Materials in Electronics, 33, 2022, 2044-2051.

2£®  Wei Long, Feifei Guo£¨Í¨Ñ¶×÷Õߣ©, Pinyang Fang, Aiguo He, Xiaojuan Li, and Zengzhe Xi, Temperature-dependent structure and electromechanical properties of Er doped PMN-PT single crystal grown by modified Bridgman technique, Journal of Alloys and Compounds, 902, 2022, 163858.

3£®  Feifei Guo#, Chao Yang, Hongqiao Zhou, Shasha Dong, Pinyang Fang, Junjun Wang, Juan Du, Wei Long, Xiaojuan Li, Bin Yang, and Zengzhe Xi, Optimized piezoelectric properties and temperature stability in PSN-PMN-PT by adjusting the phase structure and grain size, Journal of the American Ceramic Society, 104(12), 2021, 6254-6265.

4£®  Shasha Dong£¨Ñ§Éú£©, Feifei Guo£¨Í¨Ñ¶×÷Õߣ©, Hongqiao Zhou, Wei Long, Pinyang Fang, Xiaojuan Li, and Zengzhe Xi, Phase structures and electrical properties of Sm doped PSN-PMN-PT ceramics, Journal of Alloys and Compounds, 881, 2021, 160621.

5£®  Bo Jia£¨Ñ§Éú£©, Zengzhe Xi, Feifei Guo, Shaokun Zhang, Shasha Dong, Wei Long, Xiaojuan Li, Pinyang Fang, and Zhonghua Dai, Enhanced piezoelectric properties in new ternary ceramics CuO-doped PSN-PMN-PT by low-temperature sintering, Ceramics International, 47(7), 2021, 9325-9331.

6£®  Hongqiao Zhou£¨Ñ§Éú£©, Shengyu Yang, Zengzhe Xi, Shasha Dong, Feifei Guo, Wei Long, Xiaojuan Li, Pinyang Fang, and Zhonghua Dai, Enhanced thermal stability and large piezoelectric properties of Sm-doped Pb(Sc1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 multifunctional ceramics, Journal of Materials Science, 56(21), 2021, 12121-12131.

7£®  Shasha Dong£¨Ñ§Éú£©, Feifei Guo£¨Í¨Ñ¶×÷Õߣ©, Wei Long, Xiaojuan Li, Pinyang Fang, Zhonghua Dai, and Zengzhe Xi, Enhanced piezoelectric and electric field induced stain response in Bi0.5Na0.5TiO3-Ba(Zr0.055Ti0.945)O3 ceramics modified by (K0.5Na0.5)NbO3, Journal of Materials Science: Materials in Electronics, 31(16), 2020, 13979-13986.

8£®  Feifei Guo#, Yulei Wang, Zhongyuan Huang, Weibao Qiu, Zhiqiang Zhang, Zhu Wang, Jie Dong, Bin Yang and Wenwu Cao, Magnesium Alloy Matching Layer for PMN-PT Single Crystal Transducer Applications, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65(10)£º1865-1872.

9£®  Yulei Wang£¨Ñ§Éú£©, Jingya Tao, Feifei Guo£¨Í¨Ñ¶×÷Õߣ©, Shiyang Li, Xingyi Huang, Jie Dong and Wenwu Cao, Magnesium Alloy Matching Layer for High-Performance Transducer Applications, Sonsers, 2018, 18(12)£º1-10.

10£®Feifei Guo, Bin Yang, Shantao Zhang, Fengmin Wu, Danqing Liu, Pingan Hu, Dali Wang and Wenwu Cao. Enhanced pyroelectric property in (1¨Cx)(Bi0.5Na0.5)TiO3-xBa(Zr0.055Ti0.945)O3: role of morphotropic phase boundary and ferroelectric-antiferroelectric phase transition, Applied Physics Letters,103, 2013, 182906.

11£®Feifei Guo, Bin Yang, Shantao Zhang, Danqing Liu, Fengmin Wu, Dali Wang and Wenwu Cao,Electrical behaviors of c-axis textured 0.975Bi0.5Na0.5TiO3-0.025BiCoO3 thin films grown by pulsed laser deposition, Applied Surface Science 283, 2013, 759-763.

12£®Feifei Guo, Bin Yang, Shantao Zhang, Xiao Liu, Limei Zheng, Zhu Wang, Fengmin Wu, Dali Wang and Wenwu Cao£¬ Morphotropic phase boundary and electric properties in (1-x)Bi0.5Na0.5TiO3-xBiCoO3 lead-free piezoelectric ceramics, Journal of Applied Physics, 111, 2012£¬124113.

 

רÀû

1£®  ¹ù·Æ·Æ£¬ºúºÆ½Ü£¬¶­ºêÊ¢£¬ÍõöÎîÚ£¬Ô¬º£³¿£¬°×ΰ. Ò»ÖÖÎÞǦѹµçÌմɲÄÁϼ°ÆäÖÆ±¸·½·¨£¬2021-03-30£¬CN202110337649.2, ÉêÇ룬 Öйú·¢Ã÷רÀû

2£®  ÌÕæºÑÅ£¨Ñ§Éú£©,¹ù·Æ·Æ,Íõ·æ»ª,½ùÀö,¶­½Ü. Ò»ÖÖ½Ó´¥Ê½¾Û½¹ÐÍÒ½ÓÃѹµç³¬Éù»»ÄÜÆ÷¼°ÖƱ¸·½·¨£¬2019-12-5, ZL201911233845.4, ÊÚȨ£¬Öйú·¢Ã÷רÀû

3£®  ¹ù·Æ·Æ£¬»ÝÔöÕÜ£¬Áú࣬ÀîÏþ¾ê£¬·½ÆµÑô£¬ÖܺêÇÅ£¬¼Ö²©£¬ÖÜ·å·å. Ò»ÖÖÈýԪϵîêîÖËáǦ-îêþËáǦ-îÑËáǦÌմɼ°ÆäÖÆ±¸·½·¨£¬2019-12-25, CN201911352857.9£¬ ÉêÇëÖйú·¢Ã÷רÀû

4£®  Áõ½à£¬¹ù·Æ·Æ. Ò»ÖÖÑõ»¯Ð¿²ôÔÓµÄîÑËáîéÄÆ-îÜËáîéѹµç±¡Ä¤¼°ÆäÖÆ±¸·½·¨£¬2017-2-1£¬ ZL201610733319.4£¬ ÊÚȨ, Öйú·¢Ã÷רÀû

ÀîÏé

»ù±¾ÐÅÏ¢

ÐÕÃû£ºÀîÏé                                  Ñ§Àú£º²©Ê¿

רҵ£º²ÄÁÏ¿ÆÑ§Ó빤³Ì                        Ö°³Æ£º¸±½ÌÊÚ

ÉúÈÕ£º1987Äê5Ô                           ÓÊÏ䣺lixiang@xatu.edu.cn

Ö÷Ò³£ºhttps://orcid.org/0000-0002-8350-3775

ѧϰ¹¤×÷¾­Àú

2011.09¡ª2014.06  À¼ÖÝ´óѧ       ÎïÀí¿ÆÑ§Óë¼¼ÊõѧԺ   ÄÜÔ´´æ´¢²ÄÁÏ    Ë¶Ê¿Ñ§Î»

2014.09¡ª2017.09  Î÷°²½»Í¨´óѧ   Ç°ÑØ¿ÆÑ§¼¼ÊõÑо¿Ôº   ÄÜÔ´´ß»¯²ÄÁÏ    ²©Ê¿Ñ§Î»

2020.05¡ªÖÁ½ñ    ²»ÏÞip×¢²áËÍ37Ôª½ð±Ò    ²»ÏÞip×¢²áËÍ37Ôª½ð±Ò       Ñо¿Éúµ¼Ê¦

ÕÐÉú

¿ÎÌâ×éÿÄêÕÐÊÕ1-2Ãû˶ʿÑо¿Éú£¬»¶Ó­¾ßÓвÄÁÏÏà¹Ø±³¾°µÄѧÉú±¨¿¼¡£

Ñо¿·½Ïò

ȼÁÏµç³Ø´ß»¯¼Á¼°µç½âË®´ß»¯¼ÁµÄºÏÀíÉè¼ÆÓë¿É¿ØºÏ³É¡£

 

¿ÆÑÐÏîÄ¿£º

Ö÷³ÖÏîÄ¿£ºÉÂÎ÷Ê¡¿Æ¼¼ÌüÇàÄêÏîÄ¿(2022Äê, ÏîÄ¿±àºÅ: 2022JQ-098)£»ÉÂÎ÷Ê¡½ÌÓýÌüÒ»°ãÏîÄ¿(2021Äê, ÏîÄ¿±àºÅ: 21JK0670)£»²»ÏÞip×¢²áËÍ37Ôª½ð±Ò²©Ê¿Ê¦×ÊÆô¶¯ÏîÄ¿(ÏîÄ¿±àºÅ: 0853-302020590)¡£

²ÎÓëÏîÄ¿£º¹ú¼Ò×ÔÈ»»ù½ðÏîÄ¿(Åú×¼ºÅ: 21706204); ¹ú¼Ò×ÔÈ»»ù½ðÏîÄ¿(Åú×¼ºÅ: 51802261); ²©Ê¿ºó¿ÆÑ§»ù½ðÏîÄ¿(Åú×¼ºÅ: 2015M582634)¡£

Ö¸µ¼ÏîÄ¿£º´óѧÉú´´Ð´´ÒµÏîÄ¿(2020Äê, ÏîÄ¿±àºÅ: X202010702159)¡£

Ñо¿³É¹û£º

ÂÛÎÄ·¢±íÇé¿ö£º 

20. Jingjing Dou; Xiang Li*; Bo Xi; Xiaoxuan Yang; Yaming Liu; Changqing Jin; Junjun Zhang. Indium-doped flower-shaped PdIn nanocatalyst for enhanced ethanol oxidation. Catal. Sci. Technol., 2023, DOI: 10.1039/D3CY00684K. (ÖпÆÔº2Çø, IF=5.0)

19. Xiang Li*; Junjun Zhang; Bo Xi; Yaming Liu; Changqing Jin; Xiaohua Feng; Ge Liu. Tuning the surface structure of Cu2O@Pt for enhanced ethanol electrooxidation. New J. Chem., 2023, 47, 15450-15454. (ÖпÆÔº3Çø, IF=3.3)

18. Bo Xi; Xiang Li*; Junjun Zhang; Yaming Liu; Zewei Liu; Ke Wang; Jingjing Dou; and Changqing Jin. Phosphorus-Doped PdSn Nanocatalyst with Abundant Defective Atoms for Enhanced Methanol Oxidation. ACS Appl. Mater. Interfaces, 2023, 15, 30294-30301. (ÖпÆÔº2Çø, IF=10.383)

17. Liu, Yaming*; Wu, Meng; Sheng, Shanxiang; Zhi, Chao; Wang, Yongzhen; Li, Xiang*. The fabrication of Pt-Pb alloy networks with high-density micropores by dealloying for enhanced oxygen reduction activity. Int. Hydrogen Energy, 2023, 48, 13470-13478. (ÖпÆÔº2Çø, IF=7.139) .

16. Xiang Li*; Xinyuan Peng; Yixuan Wang; Bo Xi; Jingjing Dou; Jun-Jun Zhang; Yaming Liu; Changqing Jin. Iron- and Cobalt-Doped Palladium/Carbon Nanoparticles as Catalysts for Formic Acid Oxidation. ACS Appl. Nano Mater., 2022, 5, 12407-12412. (ÖпÆÔº2Çø, IF=6.140)

15. Xiang Li*; Junjun Zhang; Jingjing Dou; Mengyang Li; Xiaohua Feng; Ge Liu. Precisely Tuning the Surface Nanostructure of Ni@Pd Nanocatalysts for Enhanced Formic Acid Oxidation. ChemCatChem, 2022, e202200599. (ÖпÆÔº2Çø, IF=5.497)

14. Jun-Jun Zhang*; Meng-Yang Li; Xiang Li; Wei-Wei Bao; Chang-Qing Jin; Xiao-Hua Feng; Ge Liu; Chun-Ming Yang; Nan-Nan Zhang. Chromium-Modified Ultrathin CoFe LDH as High-Efficiency Electrode for Hydrogen Evolution Reaction. Nanomaterials, 2022, 12, 1227. (ÖпÆÔº2Çø, IF=5.719)

13. Xiang Li*; Yaming Liu; Jun-Jun Zhang; Bo Yan; Changqing Jin; Jingjing Dou; Mengyang Li; Xiaohua Feng; Ge Liu. No Annealing Synthesis of Ordered Intermetallic PdCu Nanocatalysts for Boosting Formic Acid Oxidation. Chem. Mater., 2022, 34(3): 1385-1391. (ÖпÆÔº1Çø, IF=10.508)

12. Tianou He; Weicong Wang; Fenglei Shi; Xiaolong Yang; Xiang Li; Jianbo Wu*; Yadong Yin*; Mingshang Jin*. Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature, 2021, 598, 76-81. (ÖпÆÔº1Çø, IF=69.504)

11. Xiang Li*; Junjun Zhang; Changqing Jin; Bo Yan; Jiyun Cai; Mengyang Li; Xinyuan Peng; Yixuan Wang. Tailoring Reaction Pathways by Tuning the Surface Composition of AuPt Nanocatalysts for Enhanced Formic Acid Oxidation. ACS Sustainable Chem. Eng., 2021, 9(33): 11062-11069. (ÖпÆÔº1Çø, IF=9.224)

10. Meng-Yang Li; Jun-Jun Zhang*; Xiang Li; Wei-Wei Bao; Chun-Ming Yang; Chang-Qing Jin; Meng Li; Su-Min Wang; Nan-Nan Zhang. Tuning Electronic Structure of Self-supported Vertically Aligned CoFe LDH Arrays Integrated with Ni Foam toward High Efficient Electrocatalytic Water Oxidation. New J. Chem., 2021, 45(30): 13266-13270. (ÖпÆÔº3Çø, IF=3.925)

9. Xiang Li*; Xinyuan Peng; Yixuan Wang; Bo Yan; Synthesis of Pd Nanonetworks with Abundant Defects for Oxygen Reduction Electrocatalysis, New J. Chem., 2021, 45(5): 2814-2819. (ÖпÆÔº3Çø, IF=3.925)

8. Xiang Li*; Yaming Liu; Wei Bi; Jinglei Bi; Ruiyun Guo; Rui Li; Chaoqi Wang; Qi Zhan; Weicong Wang; Shengchun Yang; Fenglei Shi; Jianbo Wu; Mingshang Jin*; Lattice-mismatch-induced growth of ultrathin Pt shells with high-index facets for boosting oxygen reduction catalysis, J. Mater. Chem. A, 2020, 8(32), 16477-16486. (ÖпÆÔº1Çø, IF=14.511)

7. Chaoqi Wang, Xiang Li, Lei Jin, Penghan Lu, Catherine Dejoie, Wenxin Zhu, Zhenni Wang, Wei Bi, Rafal Dunin-Borkowski, Kai Chen and Mingshang Jin*. Etching-Assisted Route to Heterophase Au Nanowires with Multiple Types of Active Surface Sites for Silane Oxidation. Nano Lett., 2019, 19(9), 6363-6369. (ÖпÆÔº1Çø, IF=12.262)

6. Weicong Wang, Xiang Li, Tianou He, Yaming Liu and Mingshang Jin*. Engineering surface structure of Pt nanoshells on Pd nanocubes to preferentially expose active surfaces for ORR by manipulating the growth kinetics. Nano Lett., 2019, 19(3): 1743-1748. (ÖпÆÔº1Çø, IF=12.262)

5. Ruiyun Guo, Qiang Chen, Xiang Li, Yaming Liu, Chaoqi Wang, Wei Bi, Caiyang Zhao, Yanjun Guo and Mingshang Jin*. PdCx nanocrystals with tunable compositions for alkyne semihydrogenation. J. Mater. Chem. A, 2019, 7(9): 4714-4720. (ÖпÆÔº1Çø, IF=14.511)

4. Yaming Liu, Xiang Li, Wei Bi and Mingshang Jin*. An etching-assisted route for fast and large-scale fabrication of non-layered palladium nanosheets. Nanoscale, 2018, 10(16): 7505-7510. (ÖпÆÔº1Çø, IF=8.307)

3. Xiang Li, Xixi Wang, Guang Yang, Maochang Liu, Qiang Chen*, Yadong Yin and Mingshang Jin*. Construction of Pd-M (M = Ni, Ag, Cu) alloy surfaces for catalytic applications. Nano Res., 2018, 11(2): 780-790. (ÖпÆÔº1Çø, IF=10.269)

2. Xiang Li, Zhenni Wang, Zhaorui Zhang, Guang Yang, Mingshang Jin,* Qiang Chen* and Yadong Yin*. Construction of Au-Pd alloy shells for enhanced catalytic performance toward alkyne semihydrogenation reactions. Mater. Horiz., 2017, 4(4): 584-590. (ÖпÆÔº1Çø, IF=15.717)

1. Xiang Li, Qiang Chen, Mengyue Wang, Zhenming Cao, Qi Zhan, Tianou He, Qin Kuang, Yadong Yin and Mingshang Jin*. Coordination effect assisted synthesis of ultrathin Pt layers on second metal nanocrystals as efficient oxygen reduction electrocatalysts. J. Mater. Chem. A, 2016, 4(34): 13033-13039. (ÖпÆÔº1Çø, IF=14.511)

רÀûÉêÇëÇé¿ö£º

8. ÀîÏ飻ñ¼¾§¾§£»ÑîÏþÝæ£»Ï¯²©£»½¯è÷Í©£»¶àÏà½á¹¹ËÄÃæÌåîÙî÷îâÄÉÃ×´ß»¯¼Á¼°ÆäºÏ³É·½·¨ÓëÓ¦Óã¬2023-08-24£¬Öйú£¬202311072159.X

7. Õžü¾ü£»ÀîÃÎÑó£»ÀîÏ飻Áõ¸ñ£»·ëÏþ»ª£»ÍõæÂæÂ£»½ù³¤Ç壻ìèÁÕ£»Ò»ÖÖ¶à½ðÊôÇâÑõ»¯ÎïÔ¤´ß»¯¼Á¼°ÆäÖÆ±¸·½·¨ºÍÓ¦Óã¬2021-11-18£¬Öйú£¬202111368623.0

6. ÀîÏ飻Õžü¾ü£»ÀîÃÎÑó£»Áõ¸ñ£»·ëÏþ»ª£»Ò»ÖÖÒ»²½ºÏ³É½ðÊô¼äîÙÍ­ÄÉÃ×¾§µÄºÏ³É·½·¨¼°ÆäÓ¦Óã¬2021-07-23£¬Öйú£¬202110840957.7

5. ÀîÏ飻һÖÖ¾ßÓзḻ±íÃæÈ±ÏݵÄÍø×´îÙÄÉÃ×Ïß¼°ÆäÖÆ±¸·½·¨ºÍÓ¦Óã¬2020-8-21£¬Öйú£¬202010847283.9

4. ½ðÃ÷ÉУ»ÁõÑÇÃ÷£»ÀîÏ飻һÖÖ»ùÓÚ¿ÌÊ´¸¨ÖúÉú³¤µÄÈýά½ðÊôîÙÄÉÃׯ¬¿ìËÙÖÆ±¸·½·¨£¬2019-5-24£¬Öйú£¬201710796995.0

3. ½ðÃ÷ÉУ»ÁõÑÇÃ÷£»ÀîÏ飻¹ùÈðë…£»Ò»ÖÖ¸»º¬ÂϾ§È±Ïݵij¬Ï¸²¬ÄÉÃ×ÏßµÄÖÆ±¸·½·¨£¬2019-1-21£¬Öйú£¬201910054240.2

2. ½ðÃ÷ÉУ»¹ùÈðë…£»ÀîÏ飻ÁõÑÇÃ÷£»Ò»ÖÖ×é·Ö¿Éµ÷µÄPdCxÄÉÃ×´ß»¯¼Á¼°ÆäÖÆ±¸·½·¨ºÍÓ¦Óã¬2018-12-29£¬Öйú£¬201811641400.5

1. ½ðÃ÷ÉУ»ÀîÏ飻ÁõÑÇÃ÷£»Ò»ÖÖ¿ìËÙ¸ÄÐÔîÙ´ß»¯¼Á±íÃæµÄ·½·¨£¬2017-08-24£¬Öйú£¬201710736198.3

Ðì´óÅô

»ù±¾ÐÅÏ¢

ÐÕÃû:Ðì´óÅô                                                                                             ³öÉúÄêÔ£º1981.9

ѧÀú:²©Ê¿Ñо¿Éú                                                                                      ѧλ:²©Ê¿

Ö°³Æ:¸±½ÌÊÚ                                                                                             Ö°Îñ:ÎÞ

ѧԺ:²»ÏÞip×¢²áËÍ37Ôª½ð±Ò                                                                               ÁªÏµ·½Ê½£ºEmail: badi56441071@sina.com

ѧϰ¾­Àú

2007ÄêÖÁ2010Ä꣺Î÷°²Àí¹¤´óѧ  ²ÄÁÏ¿ÆÑ§Ó빤³ÌѧԺ£¬²©Ê¿

2004ÄêÖÁ2007Ä꣺Î÷°²Àí¹¤´óѧ  ²ÄÁÏ¿ÆÑ§Ó빤³ÌѧԺ£¬Ë¶Ê¿

2000ÄêÖÁ2004Ä꣺Î÷°²Àí¹¤´óѧ  Ó¡Ë¢°ü×°ÓëÊý×ÖýÌåѧԺ£¬Ñ§Ê¿

¹¤×÷¾­Àú

2010ÄêÖÁ2013Ä꣺Ç廪´óѧ£¬²©Ê¿ºó

2013ÄêÖÁ2018Ä꣺²»ÏÞip×¢²áËÍ37Ôª½ð±Ò£¬½²Ê¦

2018ÄêÖÁ½ñ£º²»ÏÞip×¢²áËÍ37Ôª½ð±Ò£¬¸±½ÌÊÚ

ÕÐÉúÐÅÏ¢

ÿÄêÕÐÊÕ˶ʿÉú2Ãû¡£

Ñо¿·½Ïò

[1]¹¦ÄÜÄÉÃײÄÁÏ

[2]½ðÊô¸¯Ê´Óë·À»¤

Ö÷³ÖµÄ¿ÆÑÐÏîÄ¿

[1]º½¿Õº½ÌìÓøßÐÔÄܸßìØºÏ½ðÍ¿²ãµÄ¿É¿ØÖƱ¸¼¼Êõ£¬ÉÂÎ÷Ê¡ÖØµãÑз¢¼Æ»®£¬2021.1-2022.12£¬2021GY-230

[2]³¬¸ß³¤¾¶±È½ðÊôÄÉÃ×ÏߵĿɿØÉú³¤¼°ÆäÔÚ͸Ã÷µ¼µç±¡Ä¤ÖеÄÓ¦Óã¬Ð£³¤»ù½ðÃæÉÏÅàÓýÏîÄ¿£¬2021.1-2023.12£¬XGPY200203

[3]ÐÂÐͽðÊô¸´ºÏÄÉÃ׽ṹµÄÖÆ±¸¼°Æä±íÃæÔöÇ¿À­ÂüÉ¢ÉäЧӦ£¬¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÇàÄê¿ÆÑ§»ù½ðÏîÄ¿£¬2016.1-2018.12£¬11504284

[4]½ð¡¢Òø¡¢Í­ÄÉÃ׽ṹµÄÖÆ±¸¼°Æä±íÃæÔöÇ¿À­ÂüÉ¢ÉäЧӦ£¬ÉÂÎ÷Ê¡½ÌÓýÌüרÏî¿ÆÑмƻ®ÏîÄ¿£¬2016.8-2018.7£¬*16JK1377

[5]ÒºÁϵÈÀë×ÓÅçÍ¿·¨ÖƱ¸²ôÔÓÄÉÃ×¶þÑõ»¯îÑ·ÛÄ©µÄ¸ÄÐÔÑо¿£¬Î÷°²Àí¹¤´óѧ2009Äê¶ÈÓÅÐ㲩ʿÑо¿Éú¿ÆÑлù½ð

ÈÙÓþ½±Àø

[1]ÉÂÎ÷Ê¡¸ßµÈѧУ¿ÆÑ§¼¼Êõ¶þµÈ½±£¨2021Ä꣩

[2]ÉÂÎ÷Ê¡×ÔÈ»¿ÆÑ§ÓÅÐãѧÊõÂÛÎÄÈýµÈ½±£¨2020Ä꣩

[3]²»ÏÞip×¢²áËÍ37Ôª½ð±ÒÓÅÐã¹²²úµ³Ô±£¨2020Ä꣩

[4]²»ÏÞip×¢²áËÍ37Ôª½ð±ÒÓÅÐã½Ìʦ£¨2019Ä꣩

[5]ÉÂÎ÷Ê¡ÓÅÐ㲩ʿѧλÂÛÎÄ£¨2012Ä꣩

ѧÊõ³É¹û

[1] Dapeng Xu*, Jiajia Li, Song Zhang, Yifan Zhang, Wei Yang, Zixiong Wang, Jian Chen. A novel and controllable SERS system for crystal violet and Rhodamine B

detection based on copper nanonoodle substrates[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022,275:121165£¨SCI¡¢EIÊÕ¼£©

[2] Íõ×ÓÐÛ£¬Ðì´óÅô*£¬ÕÅÒ»·«£¬Àî¼Ñ¼Ñ. ±íÃæÔöÇ¿À­ÂüÉ¢Éä¼ì²â·ÖÎöÎï·Ö×ÓµÄÑо¿½øÕ¹[J]. ¹âÆ×ѧÓë¹âÆ×·ÖÎö£¬2022,42£¨2£©£º341-349.

[3] Dapeng Xu*, Yifan Zhang, Song Zhang, Wei Yang, Zixiong Wang, Jiajia Li. Copper nanoleaves SERS substrates with high surface roughness for sensitive detection crystal violet and rhodamine 6G[J]. Optics and Laser Technology, 2022,145:107502£¨SCI¡¢EIÊÕ¼£©

[4] Dapeng Xu*, Yifan Zhang, Song Zhang, Wei Yang, Jian Chen. Ultrasensitive SERS detection of crystal violet and malachite green based on high surface roughness copper nanocorns prepared via solid-state ionics method[J]. Sensors and Actuators: A. Physical, 2021,331:113042£¨SCI¡¢EIÊÕ¼£©

[5] Dapeng Xu*, Weigang Kang, Song Zhang, Wei Yang, Qiaoqin Guo, Jian Chen. Solid-state ionics method fabricated high aspect ratio silver nanowires: Application in transparent conductive films[J]. Materials Science & Engineering B, 2020,262:114759£¨SCI¡¢EIÊÕ¼£©

[6] Dapeng Xu*, Hengze Jiang, Song Zhang, Wei Yang, Qiaoqin Guo, Yifan Zhang, Jian Chen. Centimeter-scale high nanoscale roughness silver nanoparticles decorated silver nanowires: A highly sensitive material towards melamine in milk[J]. Optical Materials, 2020,109:110471£¨SCI¡¢EIÊÕ¼£©

[7] Dapeng Xu*, Hengze Jiang, Song Zhang, Wei Yang, Yifan Zhang, Zixiong Wang, Jian Chen. High roughness gold nanoparticles/silver nanowires composites:Fabrication, characterization and ultrasensitive SERS detection towards Rhodamine B[J]. Microchemical Journal, 2020,158:105136£¨SCI¡¢EIÊÕ¼£©

[8] Dapeng Xu*, Zixiong Wang, Song Zhang , Wei Yang, Jian Chen. High performance SERS substrates using high surface roughness gold nanosheets assembled by nanowires[J]. Vibrational Spectroscopy, 2020, 107:103041£¨SCI¡¢EIÊÕ¼£©

[9] Dapeng Xu*, Weigang Kang, Song Zhang , Wei Yang, Yaping Lei, Jian Chen. Quantitative determination of melamine in milk by surface-enhanced Raman scattering technique based on high surface roughness silver nanosheets assembled by nanowires[J]. Microchemical Journal, 2019, 148:190-196£¨SCI¡¢EIÊÕ¼£©

[10] Dapeng Xu*, Weigang Kang, Song Zhang , Wei Yang, Hengze Jiang,Yaping Lei, Jian Chen. Fractal theory and controllable preparation of centimeter level silver nanowire arrays and their application in melamine detection as SERS substrates[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 221: 117184£¨SCI¡¢EIÊÕ¼£©

[11] Dapeng Xu*, Wei Yang, Song Zhang,Yaping Lei, Jian Chen. Fractal theory study and SERS application of gold nanoparticles decorated centimeter level copper nanowire detectors[J]. Journal of Crystal Growth, 2019, 525: 125199£¨SCI¡¢EIÊÕ¼£©

[12] Dapeng Xu*,Yifan Zhang, Song Zhang, Wei Yang, Jian Chen. Solid-state ionics method fabricated centimeter level high surface roughness silver nanoparticles/copper nanowires composites: Fractal theory study and SERS application[J]. Optical Materials, 2019, 90: 194-199£¨SCI¡¢EIÊÕ¼£©

[13] Dapeng Xu*, Song Zhang, Wei Yang, Jian Chen. Controlled growth of centimeter level gold nanowires via a solid-state ionics method and their SERS effect[J]. Chemical Physics, 2018, 513: 116-119 £¨SCI¡¢EIÊÕ¼£©

[14]Dapeng Xu*, Wei Yang, Song Zhang, Jian Chen. High surface roughness gold nanoparticle/centimeter level silvernanowire heterostructure detectors for SERS application[J]. Sensors and Actuators A: Physical, 2018, 279: 457-461 £¨SCI¡¢EIÊÕ¼£©

[15] Dapeng Xu*, Hengze Jiang, Wei Yang, Song Zhang, Jian Chen. SERS effect of Rhodamine 6G molecular probe on AgAu alloy nanowire arrays by a solid-state ionics method[J]. Physica E: Low-dimensional Systems and Nanostructures, 2018, 102:132-136 £¨SCI¡¢EIÊÕ¼£©

[16] Dapeng Xu*, Jing Dong, Song Zhang, Jian Chen. Fractal theory study and SERS effect of centimeter level of coppernanobranch detectors by solid-state ionics method[J]. Sensors and Actuators A: Physical, 2018, 271: 18-23 £¨SCI¡¢EIÊÕ¼£©

[17] Dapeng Xu*, Song Zhang, Wei Yang, Jian Chen. Fabrication and surface enhanced Raman scattering effect of centimeter level AgCuAu composite nanowires[J]. Optical Materials, 2017, 72: 697-701£¨SCI¡¢EIÊÕ¼£©

[18] Dapeng Xu*, Weigang Kang, Wei Yang, Song Zhang, Jian Chen. Synthesis of centimeter level AgCu alloy nanowires via a solid-state ionics method and their SERS effect[J]. Journal of Alloys and Compounds, 2017, 725: 248-252£¨SCI¡¢EIÊÕ¼£©

[19] Dapeng Xu*, Jing Dong, Wei Yang, Song Zhang, Yuli Peng, Jian Chen. Solid-state ionics method fabricated centimeter level CuAu alloy nanowires: Application in SERS, Journal of Colloid and Interface Science, 2017, 500: 150-154£¨SCI¡¢EIÊÕ¼£©

[20] Dapeng Xu, Zhanmin Dong, Jia-Lin Sun. Fabrication of copper nanowires by a solid-state ionics method and their surface enhanced Raman scattering effect[J]. Materials Letters, 2013,92£º143-146£¨SCI¡¢EIÊÕ¼£©

[21] Dapeng Xu, Zhanmin Dong, Jia-Lin Sun. Fabrication of high performance surface enhanced Raman scattering substrates by a solid-state ionics method[J].Nanotechnology, 2012, 23£¨12£©: 125705£¨1-6£©£¨SCI¡¢EIÊÕ¼£©

[22] Dapeng Xu, Lajun Feng, Ali Lei. Characterizations of lanthanum trivalent ions/TiO2 nanopowders catalysis prepared by plasma spray[J]. Journal of Colloid and Interface Science, 2009, 329(2):395-403£¨SCI¡¢EIÊÕ¼£©

[23]Dapeng Xu, Lajun Feng, Ali Lei. Preparation of TiO2 nanopowders doped with Y3+ by plasma spray and characterizations[J]. Materials Letters, 2008, 62(17-18): 3297-3300£¨SCI¡¢EIÊÕ¼£©

[24]Lajun Feng, Dapeng Xu, Ali Lei. Preparation of TiO2 Nanopowders by Plasma Spray and Characterizations[J]. Journal of Thermal Spray Technology, 2008, 17(4):473-477£¨SCI¡¢EIÊÕ¼£©

[25] Xu Dapeng, Feng Lajun, Lei Ali, Zhu Guang. Preparation and Properties of Lanthanum Trivalent Ion Doped TiO2 Nanopowders by Liquid Plasma Spray[J].Journal of Rare Earths, 2007, 25( Sp. Iss. SI) : 570-574£¨SCI¡¢EIÊÕ¼£©

[26] Ðì´óÅô£¬ÕÅËÉ£¬ÑîΡ. ½ðÒøÍ­¸´ºÏÄÉÃ×ÏßÕóÁеÄÖÆ±¸¼°ÆäSERSЧӦÑо¿[J]. ²»ÏÞip×¢²áËÍ37Ôª½ð±Òѧ±¨. 2018.38£¨5£©£º481-486

[27] Ðì´óÅô£¬ÕÅËÉ£¬ÑîΡ. Í­Àë×Ó²ôÔÓÄÉÃ×¶þÑõ»¯îÑ´ß»¯¼ÁµÄ¸ÄÐÔÑо¿[J]. ²»ÏÞip×¢²áËÍ37Ôª½ð±Òѧ±¨. 2017.37£¨6£©£º431-437

[28] Ðì´óÅô£¬ÕÅËÉ£¬ÑîΡ. ¹Ì̬Àë×Óѧ·½·¨ÖƱ¸ºê¹ÛÒøÄÉÃ×ÏßÕóÁÐ[J]. ²»ÏÞip×¢²áËÍ37Ôª½ð±Òѧ±¨. 2017.37£¨5£©£º405-410

[29]·ëÀ­¿¡£¬Ðì´óÅô£¬À×°¢Àû£¬¸´Åä±íÃæ¸ÄÐÔ¼Á°ü¸²Í­Ð¿·ÛÄ©ÅäÖõĽðÓÍÄ«¼°ÖƱ¸·½·¨£¬·¢Ã÷רÀû£¬CN200610105072.8

[30] Ðì´óÅô£¬¶­Ý¼£¬ÑîΡ. ÄÉÃ×±íÃæÔöÇ¿À­ÂüÉ¢Éä»ùµ×µÄÑо¿½øÕ¹[J]. ²»ÏÞip×¢²áËÍ37Ôª½ð±Òѧ±¨. 2015.35£¨12£©£º1-8

[31]Ðì´óÅô£¬À×°¢Àû£¬·ëÀ­¿¡£¬ÑîÊ¿´¨. ÒºÁϵÈÀë×ÓÅçÍ¿·¨ÖƱ¸Fe3+/TiO2ÄÉÃ×·ÛÄ©Óë±íÕ÷[J].Ó¦Óûù´¡Ó빤³Ì¿ÆÑ§Ñ§±¨, 2008, 16(3): 341-348 £¨EIÊÕ¼£©

[32]À×°¢Àû£¬Ðì´óÅô£¬·ëÀ­¿¡£¬Öì¹ã£¬Àî¸ßºê. ÈÈÅçÍ¿·¨ÖƱ¸µÄLa3+²ôÔÓÄÉÃ×TiO2·ÛÄ©µÄ±íÕ÷[J].º¸½Óѧ±¨, 2008, 29(8): 25-28 £¨EIÊÕ¼£©

[33]Ðì´óÅô£¬À×°¢Àû£¬·ëÀ­¿¡£¬ÑîÊ¿´¨. ÒºÁϵÈÀë×ÓÈÈÅç·¨ÖÆ±¸Fe3+/TiO2ÄÉÃ×·ÛÄ©[J].º¸½Óѧ±¨,2008, 29(8): 49-52 £¨EIÊÕ¼£©

[34]·ëÀ­¿¡£¬Ðì´óÅô£¬À×°¢Àû. ±íÃæ¸ÄÐÔ¼Á¶Ôͭп·ÛÄ©±íÃæÈóʪÐÔºÍÆ¯¸¡ÐÔµÄÓ°Ïì[J].ÖйúÓÐÉ«½ðÊôѧ±¨.2008.18£¨8£©£º1566-1570£¨EIÊÕ¼£©

[35]·ëÀ­¿¡£¬Ðì´óÅô£¬À×°¢Àû. ӡˢͭ½ð·ÛµÄ±íÃæ°ü¸²¸ÄÐÔÑо¿[J].ÖйúÔìֽѧ±¨£¬ 2007, 22(4): 84-87£¨EIÊÕ¼£©

[36]·ëÀ­¿¡£¬Ðì´óÅô£¬ÑîÊ¿´¨. ¸ß¹âÔó¶È½ðÓÍÄ«Åä·½Éè¼Æ[J]. °ü×°¹¤³Ì. 2007. 28£¨3£©£º42-44


²»ÏÞip×¢²áËÍ37Ôª½ð±Ò    °æÈ¨ËùÓÐ
µØÖ·£ºÉÂÎ÷Ê¡Î÷°²ÊÐδÑë´óѧ³Çѧ¸®Öз2ºÅ Óʱࣺ710021
µç»°£º029-86173324 86173323£¨±¾¿ÆÕÐÉúרÏߣ©

²»ÏÞip×¢²áËÍ37Ôª½ð±Ò(ÁÙÏæ)ÓÐÏÞ¹«Ë¾