²»ÏÞip×¢²áËÍ37Ôª½ð±Ò

½ðÊôÑо¿Éúµ¼Ê¦
ÖÜÓ±»Ý


 

»ù±¾ÐÅÏ¢

ÐÕÃû£ºÖÜÓ±»Ý                              ³öÉúÄêÔ£º1990-09

ѧÀú£º²©Ê¿Ñо¿Éú                          Ñ§Î»£º¹¤Ñ§²©Ê¿

ÓÊÏ䣺zhouyh1014@163.com

 

½ÌÓý¾­Àú

2016.3~2022.3      Î÷±±¹¤Òµ´óѧ          ²ÄÁϼӹ¤¹¤³Ì          ²©Ê¿

2013.9~2016.1        Ìì½ò´óѧ               ²ÄÁÏѧ             Ë¶Ê¿

2009.9~2013.6     Ê¯¼ÒׯÌúµÀ´óѧ          ½ðÊô²ÄÁϹ¤³Ì          Ñ§Ê¿

 

¹¤×÷¾­Àú

2022.4-ÖÁ½ñ       ²»ÏÞip×¢²áËÍ37Ôª½ð±Ò           ½²Ê¦£¨Ë¶Ê¿Ñо¿ÉúÖ¸µ¼ÀÏʦ£©

 

ÕÐÉúÐÅÏ¢

ÿÄêÕÐÊÕ1-2Ãû˶ʿÑо¿Éú

 

½ÌÓý½Ìѧ

Ö÷½²¿Î³Ì£º±¾¿ÆÉú¿Î³Ì¡¶¹¦ÄܲÄÁÏ£¨Ë«Ó¡·

 

Ñо¿·½Ïò

¸ßÐÔÄÜÇáÖʽðÊô²ÄÁϳÉÐÎÓë¼Ó¹¤¹ý³Ì×éÖ¯¿ØÖÆ

¸ßЧÂʵ绡Ôö²ÄÖÆÔì´ó³ß´ç¸ßÇ¿ÂÁºÏ½ðµÄÖÆ±¸¹¤ÒÕ¡¢Äý¹ÌÐÐΪ¡¢È±ÏÝ¿ØÖÆ¡¢Á¦Ñ§ÐÔÄÜÑо¿

 

¿ÆÑÐÏîÄ¿

1. Öйú²©Ê¿ºó¿ÆÑ§»ù½ðµÚ73ÅúÃæÉÏ×ÊÖú£¨2023MD734199£©£¬Äý¹Ì/¹Ì̬Ïà±äЭͬµ÷¿Øµç»¡Ôö²Ä-ÉîÀä³ÉÐÎÂÁºÏ½ðÏàÎö³öÐÐΪ¼°Ç¿»¯»úÀí£¬Ö÷³Ö£¬ÔÚÑС£

2. ÉÂÎ÷Ê¡×ÔÈ»¿ÆÑ§»ù´¡Ñо¿¼Æ»®£¨2023-JC-QN-0551)£¬µç»¡Ôö²ÄÖÆÔì¸ßÇ¿Al-CuºÏ½ðµÈÖá/Öù×´¾§²ã×´Òì¹¹×éÖ¯µ÷¿ØÓë¶ÏÁÑÈÍÐÔÑо¿£¬Ö÷³Ö£¬ÔÚÑС£

3. 2023Äê´óѧÉú´´Ð´´ÒµÑµÁ·¼Æ»®ÏîÄ¿£¨2021030922£©£¬¸ßÇ¿ÂÁºÏ½ð¿ÇÌåµç»¡Ôö²ÄÖÆÔì³ÉÐÎÖÊÁ¿Óë±äÐοØÖÆÑо¿¡£

 

·¢±íÂÛÎÄ

[1] Y. Zhou, Z. Wang, X. Lin, Z. Jian, Y. Liu, Y. Ren, T. Zhang, W. Shao, X. Yang. Impact toughness and fractography of diverse microstructure in Al-Cu alloy fabricated by arc-directed energy deposition [J]. Additive Manufacturing, 2023, 63: 103414.£¨IF:11.0£©

[2] Y. Zhou, X. Lin, N. Kang, Y. Tang, W. Huang, Z. Wang. The heterogeneous band microstructure and mechanical performance in a wire + arc additively manufactured 2219 Al alloy [J]. Additive Manufacturing, 2022, 49: 102486.£¨IF:11.0£©

[3] Y. Zhou, X. Lin, Z Jian, S. Huang, Y. Ren, Y.Wu, X. Yang, W. Shao. Fracture toughness and microstructure damage behavior of thin Al-Cu alloy fabricated by wire-arc directed energy deposition [J]. Materials Science & Engineering A, 2023, 881: 145420.£¨IF:6.4£©

[4] Y. Zhou, X. Lin, N. Kang, W. Huang, J. Wang, Z. Wang. Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy [J]. Journal of Materials Science & Technology, 2020, 37: 143-153.£¨IF:10.9£©

[5] Y. Zhou, Y. Liu, X. Zhou, C. Liu, J. Yu, Y. Huang, H. Li, W. Li. Precipitation and hot deformation behavior of austenitic heat-resistant steels: A review [J]. Journal of Materials Science & Technology, 2017, 33(12): 1448-1456.£¨IF:10.9£©

[6] Y. Zhou, X. Lin, N. Kang, Z. Wang, H. Tan, W. Huang. Hot deformation induced microstructural evolution in local-heterogeneous wire + arc additive manufactured 2219 Al alloy [J]. Journal of Alloys and Compounds, 2021, 865.£¨IF:6.2£©

[7] Y. Zhou, X. Lin, N. Kang, W. Huang, Z. Wang. Mechanical properties and precipitation behavior of the heat-treated wire + arc additively manufactured 2219 aluminum alloy [J]. Materials Characterization, 2021, 171.£¨IF:4.7£©

[8] Y. Zhou, Y. Li, Y. Liu, Q. Guo, C. Liu, L. Yu, C. Li, H. Li. Precipitation behavior of type 347H heat-resistant austenitic steel during long-term high-temperature aging [J]. Journal of Materials Research, 2015, 30(23): 3642-3652.£¨IF:2.7£©

[9] Y. Zhou, Y. Liu, X. Zhou, C. Liu, L. Yu, C. Li, B. Ning. Processing maps and microstructural evolution of the type 347H austenitic heat-resistant stainless steel [J]. Journal of Materials Research, 2015, 30(13): 2090-2100.£¨IF:2.7£©

[10] Y. Zhou, C.Liu, Y.Liu, Q.Guo, H.Li. Coarsening behavior of MX carbonitrides in type 347H heat-resistant austenitic steel during thermal aging [J]. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(3): 283-293.£¨IF:4.8£©

 

 

ÉÛÎÄæÃ



»ù±¾ÐÅÏ¢

ÐÕÃû£ºÉÛÎÄæÃ                                                         ³öÉúÄêÔ£º1988Äê10Ô     

ѧÀú£º²©Ê¿Ñо¿Éú                Ñ§Î»£º¹¤Ñ§²©Ê¿

Ö°³Æ£º½²Ê¦£¨Ð£Æ¸¸±½ÌÊÚ£©                              Ö°Îñ£ºÎÞ      

ÊÖ»ú£º15829686526£¨Î¢ÐÅͬ²½£©      ÓÊÏ䣺shaowenting@xatu.edu.cn          

ѧԺ£º²»ÏÞip×¢²áËÍ37Ôª½ð±Ò                                        ×¨Òµ£º½ðÊô²ÄÁϹ¤³Ì                                                                  

ѧϰ¾­Àú

2015ÄêÖÁ2019Äê  ÄϾ©¹¤Òµ´óѧ  ²©Ê¿

2012ÄêÖÁ2015Äê  ÄϾ©¹¤Òµ´óѧ  Ë¶Ê¿

2008ÄêÖÁ2012Äê  ÄϾ©¹¤Òµ´óѧ  Ñ§Ê¿ 

¹¤×÷¾­Àú

2020Äê5ÔÂÖÁ½ñ ²»ÏÞip×¢²áËÍ37Ôª½ð±Ò ½²Ê¦£¨Ð£Æ¸¸±½ÌÊÚ£©

2020Äê2ÔÂÖÁ2023Äê2Ô ²»ÏÞip×¢²áËÍ37Ôª½ð±Ò ²©Ê¿ºó ºÏ×÷µ¼Ê¦£º³Â½¨ ½ÌÊÚ

ÕÐÉúÐÅÏ¢

ÿÄêÕÐÊÕ˶ʿÉú1-2Ãû£¬»¶Ó­¾ßÓвÄÁÏÏà¹Ø×¨Òµ±³¾°µÄÓÅÐãѧÉú±¨¿¼¡£

½ÌÓý½Ìѧ

Ö÷½²¿Î³Ì£º¡¶²ÄÁÏ¿ÆÑ§»ù´¡¡·¡¢¡¶ÖýÔ칤ÒÕѧ¡·

Ñо¿·½Ïò

½ðÊô±íÃæ¸ÄÐÔ¼°Í¿²ã£¬Ö÷񻃾¼°£º

1¡¢È¼ÁÏµç³Ø½ðÊô¼«°å±íÃæµ¼µçÄÍÊ´Í¿²ãµÄÖÆ±¸Óë¹Ø¼ü¼¼ÊõÑо¿

2¡¢¸ßìØºÏ½ð³¬Ó²±¡Ä¤µÄÖÆ±¸Óë¹Ø¼ü¼¼ÊõÑо¿

3¡¢´Å¿Ø½¦Éä¼¼Êõ

¿ÆÑÐÏîÄ¿

1¡¢¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÇàÄêÏîÄ¿£¨No.52101094£©£¬Î¢¹Û×éÖ¯µ÷¿Ø¶ÔTiN-AgÍ¿²ãAg±íÃæÆ«Îö¼°ÆäÄÍÊ´/½Ó´¥µç×èÎȶ¨ÐÔµÄÓ°Ï죬2022-01ÖÁ2024-12£¬30ÍòÔª£¬ÔÚÑУ¬Ö÷³Ö

2¡¢Öйú²©Ê¿ºó¿ÆÑ§»ù½ðÃæÉÏÏîÄ¿£¨No.2020M683670XB£©£¬²ôÒøÀàʯīͿ²ãÖÐÒøµÄ×Ô·¢ÒݳöÒÖÖÆÓë¸ßµçµ¼½á¹¹µ÷¿Ø£¬2021-01ÖÁ2022-12£¬8ÍòÔª£¬ÒѽáÌ⣬Ö÷³Ö

3¡¢ÉÂÎ÷Ê¡½ÌÓýÌü2021 Äê¶ÈÇàÄê´´ÐÂÍŶӽ¨Éè¿ÆÑмƻ®ÏîÄ¿£¨No.21JP053£©£¬(AlSiTiVNbCr)N¸ßìØºÏ½ð±¡Ä¤³¬Ó²½á¹¹µ÷¿ØÓëÖÆ±¸»úÀíÑо¿£¬2021-01ÖÁ2022-12£¬8ÍòÔª£¬ÔÚÑУ¬Ö÷³Ö

4¡¢²»ÏÞip×¢²áËÍ37Ôª½ð±Ò¹ú¼Ò¼¶´´ÐÂѵÁ·ÏîÄ¿£¨No.S202010702037£©£¬µ¶¾ß±íÃæTiAlSi»ùµª»¯ÎﱡĤµÄÖÆ±¸Óë¸ßο¹Ñõ»¯ÐÔÄÜÑо¿£¬2020-11ÖÁ2021-10£¬1ÍòÔª£¬ÒѽáÌ⣬ָµ¼½Ìʦ

5¡¢²»ÏÞip×¢²áËÍ37Ôª½ð±Ò¿ÆÑÐÆô¶¯ÏîÄ¿£¨No.302020598£©£¬2020-05ÖÁ2023-05£¬25ÍòÔª£¬ÔÚÑУ¬Ö÷³Ö

6¡¢¹ú¼ÒÖØµãÑз¢¼Æ»®ÏîÄ¿£¨No.2022YFE0122900£©£¬Àë×Óºä»÷Ìõ¼þÏ·´Ó¦´Å¿Ø³Á»ý¸ßìØºÏ½ðµª»¯ÎﱡĤ¼¼ÊõÑо¿Ó뿪·¢£¬2023-01ÖÁ2024-12£¬100ÍòÔª£¬ÔÚÑУ¬²ÎÓ루3/15£©

7¡¢¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÃæÉÏÏîÄ¿£¨No.2022YFE0122900£©£¬Æ¬²ã¦Á/¦ÂîѺϽð<a>-ÐÍλ´í»¬ÒÆÆô¶¯Î¶ÈЧӦºÍÏà½ç´«µÝµÄ¶à³ß¶ÈÑо¿£¬2023-01ÖÁ2025-12£¬54ÍòÔª£¬ÔÚÑУ¬²ÎÓ루3/4£©

8¡¢ÉÂÎ÷Ê¡¾üÃñÈںϷ¢Õ¹ÏîÄ¿£¨No.G20221231£©£¬***ÐÐÆ÷***Í¿²ãµÄ¹Ø¼ü¼¼ÊõÑо¿£¬2023-01ÖÁ2024-12£¬200ÍòÔª£¬ÔÚÑУ¬²ÎÓ루3/12£©

9¡¢ÉÂÎ÷Ê¡¾üÃñÈںϷ¢Õ¹ÏîÄ¿£¨No.G20220931£©£¬¸ßÐÔÄÜ***Í¿²ãµÄ¹Ø¼ü¼¼ÊõÑо¿£¬2022-01ÖÁ2023-12£¬200ÍòÔª£¬ÔÚÑУ¬²ÎÓ루4/12£©

10¡¢ÉÂÎ÷Ê¡¿Æ¼¼Ìü2021ÄêÖØµãÑз¢¼Æ»®Ò»°ãÏîÄ¿-¹¤ÒµÁìÓò£¨No.2021GY-208£©£¬MoNbTaTiWÄÑÈÛ¸ßìØºÏ½ð±íÃæ¸ßο¹Ñõ»¯Í¿²ãµÄ¹Ø¼üÖÆ±¸¼¼Êõ£¬2021-01ÖÁ2022-12£¬10ÍòÔª£¬ÒѽáÌ⣬²ÎÓ루2/6£©

·¢±íÂÛÎÄ

1. Wenting Shao*, Shangkun Wu, Wei Yang, Jiahua He, Shuaidan Lu, Dapeng Xu and Jian Chen. Effects of modulation period on microstructures and mechanical properties of (AlSiTiVNbCr)N/(AlSiTiVNbCr)CN nano-multilayer films, Vacuum, 2023, 170: 111660. (SCI)

2. Wenting Shao*, Xiangyu Wu, Bailing Jiang, Jian Chen, Wei Yang. Conductive and corrosion-resistant properties of graphite-like carbon coating on 6061 aluminum alloy bipolar plate for proton exchange membrane fuel cell, Rare metal materials and Engineering, 2022, 55(1): 1-5(SCI) 

3. Wenting Shao, Bailing Jiang*, Jun Ma, Fangyuan Yan. Mechanism for vacuum thermal stabilization of silver in silver doped carbon coating and performance of electrical conductivity and corrosion resistance, Thin Solid Films, 2019, 693: 137658-137664. (SCI)

4. Wenting Shao, Bailing Jiang*, Jun Ma, Xinyu Zhang. Effect of cluster interface structure on the spontaneous escape behavior of silver in ion plating coatings and its inhibition mechanism, Thin Solid Films, 2018, 664: 6-11. (SCI)

5. Wenting Shao, Xinyu Zhang, Bailing Jiang*, Canan Liu, Hongtao Li. Spontaneous escape behavior of silver from graphite-like carbon coating and its inhibition mechanism, Journal of Materials Science & Technology, 2017, 33(11): 1402-1408. (SCI)

6. ÉÛÎÄæÃ, ½¯°ÙÁé*, ·¿°®´æ. Ã¾ºÏ½ð΢»¡Ñõ»¯ÌåϵÖÐËÄÅðËáÄÆµÄ×÷ÓûúÀíÑо¿, Ï¡ÓнðÊô²ÄÁÏÓ빤³Ì, 2016, 45(4): 918-922. (SCI)  

7. Xiaoqian Shi , Wei Yang*, Zhaohui Cheng, Wenting Shao, Dapeng Xu, Yong Zhang, Jian Chen*. Influence of micro arc oxidation on high temperature oxidation resistance of AlTiCrVZr refractory high entropy alloy, International Journal of Refractory Metals and Hard Materials, 2021, 98: 137658-105562. (SCI)

8. Shuaidan Lu , Xiaoxiao Li , Xiaoyu Liang , Wenting Shao, Wei Yang , Jian Chen *. Effect of Al content on the oxidation behavior of refractory high-entropy alloy AlMo0.5NbTa0.5TiZr at elevated temperatures, International Journal of Refractory Metals and Hard Materials, 2022, 105:105812. (SCI)

9. Chan Wang *, Jian Chen, Shuhua Liang, Wenting Shao. First-principles calculations to investigate pressure effect on structural, elastic and thermodynamic properties of AlCu, Al2Cu and Al4Cu9, Vacuum, 2022, 203: 111279. (SCI)

10. Shuaidan Lu, Xiaoxiao Li, Xiaoyu Liang, Jiahua He, Wenting Shao, Kuanhe Li, Jian Chen*. Effect of Y additions on the oxidation behavior of vacuum arc melted refractory high-entropy alloy AlMo0.5NbTa0.5TiZr at elevated temperatures. Vacuum. 2022, 201: 111069. (SCI)

11. Shuaidan Lu, Xiaoxiao Li, Xiaoyu Liang, Jiahua He, Wenting Shao, Kuanhe Li, Jian Chen*. Effect of Ho Addition on the Glass-Forming Ability and Crystallization Behaviors of Zr54Cu29Al10Ni7 Bulk Metallic Glass. Materials. 2022, 15(7): 2516. (SCI)

12. Yong Zhang, Wei Yang*, Sen Yu, Liqun Wang, Xiqun Ma, Wei Gao, Nan Lan, Wenting Shao, Jian Chen. Microstructure and Properties in Simulated Seawater of Copper-Doped Micro-arc Coatings on TC4 Alloy, Coatings, 2022, 12: 883.(SCI)

ÊÚȨרÀû

1. ÉÛÎÄæÃ, ÎéÏèÓî, ³Â½¨, ÑîΡ, ÎäÉÏŸj, ÕÅÈðºì, ÀîÖÙ˶, Áõê×. Ò»ÖÖ¸ßìØºÏ½ðµª»¯Îïµ¶¾ßÍ¿²ã¼°ÆäÖÆ±¸·½·¨, 2023-03-29, Öйú, רÀûºÅ:ZL 202110505154.6 . 

2. ½¯°ÙÁå, ÉÛÎÄæÃ, ÕÅÐÂÓî, Âí¿¡. Ò»ÖÖÒø²ôÔÓÀàʯī̼Ϳ²ã¼°ÆäÖÆ±¸·½·¨, 2020-07-24, Öйú, רÀûºÅ: ZL201711071627.6. 

3. ½¯°ÙÁå, ÉÛÎÄæÃ, ÀîºéÌÎ, ·¿°®´æ, ·¿ê»ì¿, Õų¬. Ò»ÖÖÓÃÓÚþºÏ½ð΢»¡Ñõ»¯µÄµç½âÒº, 2017-06-16, Öйú, רÀûºÅ: ZL201410420017.2. 

4. ÀîºéÌÎ, ½¯°ÙÁå, Î⺣¾ê, ÉÛÎÄæÃ, ÕÅÐÂÓî, ÅíÖ¾éª. µç³ØÓýðÊô¼«°å±íÃæÄÍÊ´µ¼µç¸´ºÏÍ¿²ã¡¢µç³ØÓýðÊô¼«°å¼°ÆäÖÆ±¸·½·¨, 2020-05-19, Öйú, רÀûºÅ: ZL201710889889.7. 

ÉêÇëרÀû

1. ÉÛÎÄæÃ, ³©Êö, ¹ù¼Îΰ, ÎäÉÏŸj, ³Â½¨, ÑîΡ, ºÎ¼Ñ»ª, ¬˧µ¤, Ðì´óÅô, ¶¡Èʸù, ÕÔ¶ɯ, ÍõÙ». Ò»ÖÖ¸ßìØºÏ½ð°Ð²ÄÖÆ±¸×°ÖÃ, 2023-06-08, Öйú, ÉêÇëºÅ: 202310679955.3.

2. ÉÛÎÄæÃ, ²ÜÀöÄÈ, ³Â½¨, ÑîΡ, ÀîÖÙ˶, ºÎ¼Ñ»ª, Â¬Ë§µ¤. Ìá¸ß¸ßìØµª»¯ÎïĤĤ»ù½áºÏÇ¿¶ÈµÄÌݶȹý¶É²ã¼°ÖƱ¸·½·¨£¬2022-03-22£¬Öйú, ÉêÇëºÅ: 202210285916.0.

3. ÉÛÎÄæÃ, ²ÜÀöÄÈ, ³Â½¨, ÑîΡ, ¬˧µ¤, ºÎ¼Ñ»ª, ÀîÖÙ˶. Ò»ÖÖÉí¹ÜÄÚÌűíÃæµÄ¸ßìØºÏ½ð±¡Ä¤¼°ÆäÖÆ±¸·½·¨, 2022-03-14, Öйú, ÉêÇëºÅ: 202210247384.1.

4. ÉÛÎÄæÃ, Íõè¤, ³Â½¨, ÑîΡ, Áõê×, ºÎ¼Ñ»ª, ¬˧µ¤. ¾ßÓе¼µçÄÍÊ´Í¿²ãµÄȼÁÏµç³Ø½ðÊô¼«°å¼°ÆäÖÆ±¸·½·¨, 2022-03-02, Öйú, ÉêÇëºÅ: 202210206361.6.

»ñ½±

1. ÉÛÎÄæÃ. ²»ÏÞip×¢²áËÍ37Ôª½ð±ÒµÚ¶þ½ì¡°½Ìʦ½Ìѧ¾ºÈü¡±ôßµÚÊ®Èý½ì¡°ÇàÄê½Ìʦ½²¿Î±ÈÈü¡±, ÓÅÐã½±, 2021.

2. ÉÛÎÄæÃ(6/7). ½­ËÕÊ¡¿ÆÑ§¼¼Êõ¶þµÈ½±, µÍÄܺÄÇáºÏ½ð΢»¡¸´ºÏ´¦Àí¹Ø¼üÉ豸ÑÐÖÆÓ빤ÒÕ¿ª·¢, 2020.

ºÎ¼Ñ»ª

»ù±¾ÐÅÏ¢

ÐÕÃû£ººÎ¼Ñ»ª                                                         ³öÉúÄêÔ£º1991Äê12Ô     

ѧÀú£º²©Ê¿Ñо¿Éú                                                 Ñ§Î»£º¹¤Ñ§²©Ê¿       

Ö°³Æ£º½²Ê¦£¨Ð£Æ¸¸±½ÌÊÚ£©                                ÓÊÏ䣺hejiahua@xatu.edu.cn

ѧԺ£º²»ÏÞip×¢²áËÍ37Ôª½ð±Ò                                         ×¨Òµ£º½ðÊô²ÄÁϹ¤³Ìϵ                                                                 

ѧϰ¾­Àú

2013ÄêÖÁ2020Äê  Î÷±±¹¤Òµ´óѧ  ²©Ê¿£¨ÍÆÃâÖ±²©£©£¬µ¼Ê¦£º¹ùϲƽ

2009ÄêÖÁ2013Äê  Î÷±±¹¤Òµ´óѧ  Ñ§Ê¿£¨½ÌÓýʵÑéѧԺ/²ÄÁÏѧԺ£©

¹¤×÷¾­Àú

2021Äê1ÔÂÖÁ½ñ ²»ÏÞip×¢²áËÍ37Ôª½ð±Ò ½²Ê¦£¨Ð£Æ¸¸±½ÌÊÚ£©

ÕÐÉúÐÅÏ¢

ÿÄêÕÐÊÕ˶ʿÉú1~2Ãû

½ÌÓý½Ìѧ

Ö÷½²¿Î³Ì£º¡¶²ÄÁϼӹ¤»ù´¡2ÖýÔìÔ­Àí¡·

Ñо¿·½Ïò

¸ßìØºÏ½ð¶¨ÏòÄý¹Ì

¸ßìØºÏ½ðÒ칹ǿÈÍ»¯

´©¼×Õ½¶·²¿ÓøßìØºÏ½ð

¸ßηÀ»¤Í¿²ã

ÈÙÓþ/ѧÊõ¼æÖ°/»ñ½±

1¡¢ ÈëÑ¡2022ÄêÉÂÎ÷Ê¡¿ÆÐ­ÇàÄêÈ˲ÅÍоټƻ®

2¡¢ ½ÌÓý²¿Ñо¿Éú½ÌÓýÆÀ¹À¼à²âר¼Ò¿âר¼Ò

¿ÆÑÐÏîÄ¿

1¡¢¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÇàÄêÏîÄ¿£¨No.52101093£©£¬MAXÏà¸ÄÐԹ軯ÎïÍ¿²ãµÄ×éÖ¯µ÷¿Ø¼°ÈÍÐÔ/¿¹Ñõ»¯ÐÔÄÜÑо¿£¬2022-01ÖÁ2024-12£¬30ÍòÔª£¬ÔÚÑУ¬Ö÷³Ö

2¡¢ÉÂÎ÷Ê¡½ÌÓýÌüÇàÄê´´ÐÂÍŶӿÆÑмƻ®ÏîÄ¿£¨No.22JP033£©£¬ÒìÖʽṹ¹²¾§¸ßìØºÏ½ðµÄ¶¨ÏòÄý¹Ì×éÖ¯Óë±äÐλúÀíÑо¿£¬2022-01ÖÁ2021-12, 5ÍòÔª£¬ÔÚÑУ¬Ö÷³Ö

3¡¢ÉÂÎ÷Ê¡¿ÆÐ­ÇàÄêÈ˲ÅÍоټƻ®ÏîÄ¿£¨No. 20220467£©£¬Nb»ùºÏ½ð/MoSi2Í¿²ã½çÃæ¸ßìØºÏ½ð±¡Ä¤×èÀ©É¢»úÀíÑо¿£¬2023-01ÖÁ2024-12, 3ÍòÔª£¬ÔÚÑУ¬Ö÷³Ö

4¡¢¿Æ¼¼²¿ÖصãÑз¢¼Æ»®-Õþ¸®¼ä¹ú¼Ê¿Æ¼¼´´ÐºÏ×÷ÏîÄ¿£¨No.2022YFB0122900£©£¬Àë×Óºä»÷Ìõ¼þÏ·´Ó¦´Å¿Ø³Á»ý¸ßìØºÏ½ðµª»¯ÎﱡĤ¼¼ÊõÑо¿Ó뿪·¢£¬2023-01-2024-12£¬100ÍòÔª£¬ÔÚÑУ¬²ÎÓë

5¡¢¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÃæÉÏÏîÄ¿£¨No.51971181£©£¬¸ÄÐԹ軯î⸴ºÏÌݶÈÍ¿²ãµÄ×éÖ¯µ÷¿Ø¼°Æä¸ßο¹Ñõ»¯ÐÔÄÜÑо¿£¬2020-01-2023-12£¬58ÍòÔª£¬ÔÚÑУ¬²ÎÓë 

6¡¢ÉÂÎ÷Ê¡¾üÃñÈںϷ¢Õ¹×¨ÏG20230415£©£¬***Í¿²ãµÄ¹Ø¼ü¼¼ÊõÑо¿£¬2023-01-2024-12£¬200ÍòÔª£¬ÔÚÑУ¬²ÎÓë

7¡¢ÉÂÎ÷Ê¡¾üÃñÈںϷ¢Õ¹×¨ÏG20220931£©£¬¸ßÐÔÄÜ***µÄ¹Ø¼ü¼¼ÊõÑо¿£¬2022-01-2023-12£¬200ÍòÔª£¬ÔÚÑУ¬²ÎÓë

8¡¢ÉÂÎ÷Ê¡×ÔÈ»¿ÆÑ§»ù´¡Ñо¿¼Æ»®ÏîÄ¿£¨2022JC-DW5-04£©£¬³¬¸ßÇ¿¶È¸ßìØºÏ½ðµÄ×éÖ¯µ÷¿ØºÍÇ¿ËÜÐÔÑо¿£¬2022-01-2024-12£¬100ÍòÔª£¬ÔÚÑУ¬²ÎÓë

9¡¢ºáÏòίÍÐμÄÏľÍõÖÇÄܿƼ¼¹É·ÝÓÐÏÞ¹«Ë¾£¨H202301002£©£¬¸ßìØºÏ½ð²ÄÁϼ°Í¿²ã¼¼Êõ£¬2022-12-2023-11£¬200ÍòÔª£¬ÔÚÑУ¬²ÎÓë

·¢±íÂÛÎÄ

[1] Jiahua He, Xiping Guo*, Yanqiang Qiao. Effect of Zr content on the structure and oxidation resistance of silicide coatings prepared by pack cementation technique. Corrosion Science, 2019, 147: 152-162. £¨ÖпÆÔº1Çø£©

[2] Jiahua He, Xiping Guo*, Yanqiang Qiao. Microstructure evolution and hot corrosion behavior of Zr-Y modified silicide coating prepared by two-step process. Corrosion Science, 2019, 156: 44-57. £¨ÖпÆÔº1Çø£©

[3] Jiahua He, Xiping Guo*, Yanqiang Qiao£¬Fa Luo. A novel Zr-Y modified silicide coating on Nb-Si based alloys as protection against oxidation and hot corrosion. Corrosion Science, 2020, 177: 108948. £¨ÖпÆÔº1Çø£©

[4] Jiahua He, Xiping Guo*, Yanqiang Qiao. Oxidation behavior and adhesion performance of TiSi2-NbSi2 composite coating prepared via magnetron sputtering and then pack cementation. Journal of Alloys and Compounds, 2020, 820: 153425.

[5] Jia-hua HE, Xi-ping GUO*, Yan-qiang QIAO. Oxidation and hot corrosion behaviors of Nb-Si based ultrahigh temperature alloys at 900 ¡ãC. Transactions of Nonferrous Metals Society of China, 2021, 31: 207-221.

[6] Jiahua He, Xiping Guo. Microstructure and oxidation resistance of Y modified silicide coatings prepared on Zr-Ti-Al alloy. Materials Science Forum. 2018, 913: 365-374.

[7] Shuaidan Lu, Xiaoxiao Li, Xiaoyu Liang, Jiahua He, Wenting Shao, Kuanhe Li, Jian Chen*. Effect of Y additions on the oxidation behavior of vacuum arc melted refractory high-entropy alloy AlMo0.5NbTa0.5TiZr at elevated temperatures. Vacuum. 2022, 201: 111069.

[8] Shuaidan Lu, Xiaoxiao Li, Xiaoyu Liang, Jiahua He, Wenting Shao, Kuanhe Li, Jian Chen*. Effect of Ho Addition on the Glass-Forming Ability and Crystallization Behaviors of Zr54Cu29Al10Ni7 Bulk Metallic Glass. Materials. 2022, 15(7): 2516.

[9] X. Zhou, J. Chen*, R. Ding** , H. Wu, J. Du, J. He, W. Wang, W. Sun, Y. Liu, G. Sha, H. Pan. Carbon-driven coherent nanoprecipitates enable ultrahigh yield strength in a high-entropy alloy. Materials Today Nano. 2023, 22: 100331.

[10] Xueyang Zhou, Jian Chen*, Rengen Ding** , Haoyue Wu, Shuaidan Lu, Jiahua He, Weili Wang, Hongge Pan. A novel coherent particles-reinforced FCC-based high-entropy superalloy with superior high-temperature compressive properties. Materials Science & Engineering A. 2023, 872: 144947.

[11] Xueyang Zhou, Jian Chen* , Rengen Ding** , Haoyue Wu, Shuaidan Lu, Jiahua He, Hongge Pan. Effect of Mn on microstructure and tensile properties of as-cast Al 0.5 CoFeNiC 0.1 high-entropy alloy. 2023, 873: 144951.

רÀû

[1] ¹ùϲƽ, ºÎ¼Ñ»ª, ÇÇÑåÇ¿. Zr£¬Ti£¬Al¶àÔª¸ÄÐԹ軯ÎïÉø²ãµÄÁ½²½·¨ÖƱ¸·½·¨. 2021-2-2, Öйú, ZL201910070452.X. ÊÚȨ

[2] ¹ùϲƽ, ÕÅËÉ, ºÎ¼Ñ»ª, ÇÇÑåÇ¿, ÌÆêÊ. Nb-Si»ù³¬¸ßκϽ𶧵ÄÖÆ±¸·½·¨. 2017-10-13, Öйú, ZL201610556027.8. ÊÚȨ

[3] ¹ùϲƽ, ÕÅËÉ, ÇÇÑåÇ¿, ÔøÓîÏè, ÕÅê», ÌÆêÊ, ºÎ¼Ñ»ª. ¶àÔªNb-Si»ù³¬¸ßκϽð²ÄÁϼ°ÆäÖÆ±¸·½·¨. 2016-10-26, Öйú, CN106048356A£¬ÉêÇë

[4] ÉÛÎÄæÃ£¬Íõ褣¬³Â½¨£¬ÑîΡ£¬Áõê×£¬ºÎ¼Ñ»ª£¬Â¬Ë§µ¤. ¾ßÓе¼µçÄÍÊ´Í¿²ãµÄȼÁÏµç³Ø½ðÊô¼«°å¼°ÆäÖÆ±¸·½·¨. 2022-3-2, Öйú£¬202210206361.6£¬ÉêÇë

[5] ÉÛÎÄæÃ£¬²ÜÀöÄÈ£¬³Â½¨£¬ÑîΡ£¬Â¬Ë§µ¤£¬ºÎ¼Ñ»ª£¬ÀîÖÙ˶. Ò»ÖÖÉí¹ÜÄÚÌűíÃæµÄ¸ßìØºÏ½ð±¡Ä¤¼°ÆäÖÆ±¸·½·¨. 2022-3-14, Öйú£¬202210247384.1£¬ÉêÇë

[6] ÉÛÎÄæÃ£¬²ÜÀöÄÈ£¬³Â½¨£¬ÑîΡ£¬ÀîÖÙ˶£¬ºÎ¼Ñ»ª£¬Â¬Ë§µ¤. Ìá¸ß¸ßìØºÏ½ðµª»¯ÎïĤĤ»ù½áºÏÇ¿¶ÈµÄÌݶȹý¶É²ã¼°ÖƱ¸·½·¨. 2022-3-22£¬Öйú£¬202210285916.0£¬ÉêÇë

[7] ºÎ¼Ñ»ª,ÕÔ¶Ô,¬˧µ¤,ÉÛÎÄæÃ,³Â½¨. Ò»ÖÖ Ti3SiC2 ¸ÄÐԹ軯ÎïÍ¿²ã¼°ÆäÖÆ±¸·½·¨. 2023-3-16£¬Öйú£¬202310255439.8£¬ÉêÇë

[8] ºÎ¼Ñ»ª,ÕÅÑÐñû,Íõ½¨Ê÷,¬˧µ¤,ÉÛÎÄæÃ,³Â½¨. Ò»ÖÖ»ùÓÚ¸ßÌݶȶ¨ÏòÄý¹ÌµÄÒì¹¹¹²¾§¸ßìØºÏ½ð¼°ÆäÖÆ±¸·½·¨. 2023-5-15£¬Öйú£¬202310543611X£¬ÉêÇë

[9] ºÎ¼Ñ»ª,ÕÅÑÐñû,Íõ½¨Ê÷,¬˧µ¤,ÉÛÎÄæÃ,³Â½¨. Ò»ÖÖ»ùÓÚ¶¨ÏòÄý¹Ì»ñµÃα¹²¾§×éÖ¯µÄ¸ßìØºÏ½ð¼°ÆäÖÆ±¸·½·¨. 2023-7-6£¬Öйú£¬202310824465.8£¬ÉêÇë

 

 

»ÆÊ¿ÐÇ

»ù±¾ÐÅÏ¢

ÐÕÃû£º»ÆÊ¿ÐÇ                              ³öÉúÄêÔ£º1991-11

ѧÀú£º²©Ê¿Ñо¿Éú                         Ñ§Î»£º¹¤Ñ§²©Ê¿

Ö°³Æ£º½²Ê¦                                 ÓÊÏ䣺hsxing1991@163.com

½ÌÓý¾­Àú

2017.9~2021.10      ¶«±±´óѧ             ²ÄÁÏ¿ÆÑ§Ó뻯¹¤Ñ§Ôº    ²ÄÁÏѧ         ²©Ê¿

2014.9~2017.6       ÁÉÄþ¹¤Òµ´óѧ         ²ÄÁÏ¿ÆÑ§Ó뻯¹¤Ñ§Ôº    ²ÄÁÏѧ          Ë¶Ê¿

2010.9~2014.6       ÁÉÄþ¹¤Òµ´óѧ        ²ÄÁÏ¿ÆÑ§Ó뻯¹¤Ñ§Ôº    ²ÄÁÏÎïÀí       Ñ§Ê¿

¹¤×÷¾­Àú

2021.11-ÖÁ½ñ     ²»ÏÞip×¢²áËÍ37Ôª½ð±Ò     ½²Ê¦

Ñо¿·½Ïò

¸ßÐÔÄÜîѺϽð³É·ÖÉè¼Æ¡¢×éÖ¯µ÷¿Ø¼°Ç¿ÈÍ»¯Ñо¿

¸ßÐÔÄÜîÑ»ù¸´ºÏ²ÄÁÏÖÆ±¸Óë³ÉÐͼ¼ÊõÑо¿

þºÏ½ðÈȱäÐÎÐÐΪ¼°Î¢¹Û»úÖÆÑо¿

ÕÐÉúÐÅÏ¢                                                 

ÿÄêÕÐÊÕ1-2Ãû˶ʿÑо¿Éú

¿ÆÑÐÏîÄ¿

£¨1£©ÉÂÎ÷Ê¡¿ÆÑ§¼¼ÊõÌü 2022ÄêÇØ´´Ô­¸ß²ã´ÎÈ˲ÅÏîÄ¿£¨QCYRCXM-2022-147£©£¬»¯¹¤Óôó³ß´ç¸ßÐÔÄÜþºÏ½ð°å²ÄÖÆÔìÓëÓ¦Óü¼Êõ£¬2023-01ÖÁ2025-12£¬18ÍòÔª£¬ÔÚÑУ¬Ö÷³Ö£»

£¨2£©ÉÂÎ÷Ê¡¿ÆÑ§¼¼ÊõÌü ÉÂÎ÷Ê¡×ÔÈ»¿ÆÑ§»ù´¡Ñо¿¼Æ»®Ò»°ãÏîÄ¿£¨ÇàÄê2023-JC-QN-0530£©£¬½üalphaîѺϽðÖÐbetaÏàËÜÐÔ±äÐε÷¿Ø»úÖÆÑо¿£¬2023-01ÖÁ2024-12£¬5ÍòÔª£¬ÔÚÑУ¬Ö÷³Ö.

·¢±íÂÛÎÄ

1. S.X. Huang, Q.Y. Zhao, Y.Q. Zhao, C. Lin, C. Wu, W.J. Jia, C.L. Mao, V. Ji, Toughening effects of Mo and Nb addition on impact toughness and crack resistance of titanium alloys, Journal of Materials Science and Technology, 2021, 79, 147-164. (SCI, IF: 10.32)

2. S.X. Huang, Q.Y. Zhao, C. Lin, C. Wu, Y.Q. Zhao, W.J. Jia, C.L. Mao, In-situ investigation of tensile behaviors of Ti-6Al alloy with extra low interstitial, Materials Science & Engineering A, 2021, 809, 140958. (SCI, IF: 6.044)

3. S.X. Huang, Q.Y. Zhao, C. Lin, C. Wu, Y.Q. Zhao, W.J. Jia, C.L. Mao, Effects of oxygen content on Charpy impact properties and crack resistance of ¦Á titanium alloys, Materials Science & Engineering A, 2021, 818, 141394. (SCI, IF: 6.044)

4. S.X. Huang, Q.Y. Zhao, C. Wu, C. Lin, Y.Q. Zhao, W.J. Jia, C.L. Mao, Effects of ¦Â-stabilizer elements on microstructure formation and mechanical properties of titanium alloys, Journal of Alloys and Compounds, 2021, 876, 160085. (SCI, IF: 6.371)

5. S.X. Huang, Y.Q. Zhao, J.S. Yu, C. Lin, C. Wu, W.J. Jia, Effects of ¦Â-stabilizer elements on microstructure formation and mechanical properties of titanium alloys, Journal of Alloys and Compounds, 2020, 826, 154128. (SCI, IF: 6.371)

6. C. Wu, Y.Q. Zhao, S.X. Huang, Q.Y. Sun, L. Zhou, Effect of cooling rate on a variant selection and microstructure evolution in a near ¦Â Ti-5Al-3Mo-3V-2Cr-2Zr-1Nb-1Fe alloy, Journal of Alloys and Compounds, 2020, 841, 155728. (SCI, IF: 6.371)

7. C. Wu, Y.Q. Zhao, S.X. Huang, L. Lei, Q.Y. Sun, L. Zhou, Microstructure tailoring and impact toughness of a newly developed high strength Ti-5Al-3Mo-3V-2Cr-2Zr-1Nb-1Fe alloy, Materials Characterization, 2021, 175, 111103. (SCI, IF: 4.537)

8. J.S. Yu, Q.Y. Zhao, S.X. Huang, Y.Q. Zhao, J.W. Lu, L.L. Dong, N. Tian, Enhanced mechanical and tribological properties of graphene nanoplates reinforced TC21 composites using spark plasma sintering, Journal of Alloys and Compounds, 2021, 873, 159764. (SCI, IF: 6.371)

9. J.S. Yu, Q.Y. Zhao, S.X. Huang, Y.Q. Zhao, Y. Zhou, J.W. Lu, L.L. Y.S. Zhang. Effect of sintering temperature on microstructure and properties of graphene nanoplatelets reinforced TC21 composites prepared by spark plasma sintering, Journal of Alloys and Compounds, 2021, 879, 160346. (SCI, IF: 6.371)

10. L. Lei, Q.Y. Zhao, Y.Q. Zhao, S.X. Huang, C. Wu, W.J. Jia, W.D. Zeng, Study on the intrinsic factors determining impact toughness of TC21 alloy, Materials Characterization, 2021, 177: 111164. (SCI, IF: 4.537)

11. L. Lei, Y.Q. Zhao, Q.Y. Zhao, C. Wu, S.X. Huang, W.J. Jia, W.D. Zeng, Impact toughness and deformation modes of Ti-6Al-4V alloy with different microstructures, Materials Science & Engineering A, 2021, 801, 140411. (SCI, IF: 6.044)

12. J. Wang, Y.Q. Zhao, W. Zhou, Q.Y. Zhao, S.X. Huang, W.D. Zeng, In-situ investigation on tensile deformation and fracture behaviors of a new metastable ¦Â titanium alloy, Materials Science & Engineering A, 2021, 801, 140411. (SCI, IF: 6.044)

13. C. Lin, S.X. Huang, G.L. Yin, A.M. Zhang, Z.W. Zhao, Y.Q. Zhao, A simple model to ascertain the initial formation concentration of athermal ¦Ø phase in titanium alloys, Computational Materials Science, 2016, 123, 263-267. (SCI, IF: 3.572)

רÀû

1. ÕÔÓÀÇì, »ÆÊ¿ÐÇ, Îâ´Ï, Ò»ÖÖîѺϽð¶Ï¿ÚÆÊÃæµÄEBSDÊÔÑùÖÆ±¸·½·¨: Öйú, ZL 20191 0921930.3. £¨ÊÚȨ£©

Ðí¾ü·æ

»ù±¾ÐÅÏ¢

ÐÕÃû: Ðí¾ü·æ ³öÉúÄêÔÂ: 1981Äê4ÔÂ

ѧÀú: ²©Ê¿Ñо¿Éú ѧλ: ²©Ê¿

Ö°³Æ: ¸±½ÌÊÚ

ѧԺ: ²»ÏÞip×¢²áËÍ37Ôª½ð±Ò ÁªÏµ·½Ê½£º

xujunfeng@mail.nwpu.edu.cn

ѧϰ¾­Àú

2000Äê9ÔÂ-2007Äê6Ô¡ª¡ª²»ÏÞip×¢²áËÍ37Ôª½ð±Ò£¬±¾¿Æ£¬Ë¶Ê¿£¬µ¼Ê¦£º¼áÔöÔ˽ÌÊÚ

2008Äê3ÔÂ-2013Äê4Ô¡ª¡ªÎ÷±±¹¤Òµ´óѧ£¬²©Ê¿£¬µ¼Ê¦£ºÁõ·å½ÌÊÚ

2019Äê12ÔÂ-2021Äê1Ô¡ª¡ªµÂ¹úÒ®Äôóѧ£¬ÎïÀíÓëÌìÎÄѧѧԺ£¬ºÏ×÷µ¼Ê¦£ºPeter K Galenko

¹¤×÷¾­Àú

2013Äê5ÔÂ--2019Äê11Ô£¬²»ÏÞip×¢²áËÍ37Ôª½ð±Ò½ðÊô²ÄÁϹ¤³Ìϵ

2019Äê12ÔÂ--2021Äê1Ô£¬µÂ¹úÒ®ÄôóÑ§Ð¤ÌØ²ÄÁÏÑо¿Ëù

2021Äê2ÔÂ--ÏÖÔÚ£¬²»ÏÞip×¢²áËÍ37Ôª½ð±Ò½ðÊô²ÄÁϹ¤³Ìϵ

½ÌÓý½Ìѧ

Ö÷½²¡¶²ÄÁÏ¿ÆÑ§»ù´¡¡·¡¶²ÄÁÏÈÈÁ¦Ñ§¡·¡¶ÖýÔìºÏ½ð¼°ÈÛÁ¶¡·¡¶Äý¹ÌÔ­Àí¡·µÈ¿Î³Ì¡£

Ñо¿·½Ïò

(1) ÁòϵºìÍâ²£Á§µÄÉú²ú¹¤ÒÕ

Ö÷Òª³É¹û£ºÌá³öÁË´óÌå»ýÁòϵºìÍâ²£Á§ÖƱ¸µÄµÈοì´ãй¤ÒÕ£»Ñо¿ÁË´¿Se¡¢¶þÔªAs-Se¡¢Ge-Se¡¢Sb-Se¡¢Ge-S¡¢ÈýÔªGe-Se-Sb¡¢Ge-Se -Te¡¢Ge-Se-Sb-Te¡¢Ge-Se-Sb-SÁòϵ²£Á§µÄÎïÀíÐÔÄÜ¡¢ÖƱ¸¹¤ÒÕ¼°ÈÈ´¦Àí¹¤ÒÕ£»Ñо¿ÁËCsCl¡¢CsI¡¢RbIµÈ¾§ºË¼Á¶ÔÁòϵ²£Á§´àÐԵĸÄÉÆÐ§¹û¡£

(2) ¹²¾§Äý¹ÌÀíÂÛ

Ö÷Òª³É¹û£ºÌá³öÁË»ùÏß·¨¹ÀËãºÏ½ðÏà·ÖÊýµÄ·½·¨£»¹¹½¨Á˽ðÊôºÏ½ðÄý¹Ì¹ý³ÌµÄζÈÇúÏß·½³Ì£»¸ø³öÁË·ÇÎÈ̬À©É¢·½³ÌµÄÍêÕûÇó½â¹ý³Ì£¬²¢¿¼ÂdzõÉúÏàµÄÓ°Ï죬¹¹½¨Á˷ǹ²¾§³É·ÖºÏ½ðµÄ¹²¾§Éú³¤Ä£ÐÍ£»¿¼ÂÇÈÜÖʽçÃæÀ©É¢ËÙÂÊ·Ö±ð½¨Á¢ÁËµÄÆ¬×´¹²¾§Éú³¤ºÍ°ô×´¹²¾§Éú³¤Ä£ÐÍ£»½¨Á¢ÁËÈÛÌå¹ýÈÈ´¦Àí¶ÔÄý¹Ì¹ý³ÌÓ°ÏìµÄÄ£ÐÍ£»ÊµÑéÖ¤Ã÷Á˹²¾§ºÏ½ðÖгõÉúÏàºÍ¹²¾§Ïàת±äÐκ˹æÂÉÏà·´µÄÏÖÏó£»·¢ÏÖÁ˹ÌÈÜÌåÏàºÍ½ðÊô¼ä»¯ºÏÎï΢¹Û´æÖüÄÜÁ¿·½Ê½µÄÒìͬ£»·¢ÏÖÁË´ÓÄý¹Ì¹ý³ÌÀäÈ´ÇúÏßÉϵÄÔÙ»Ô¹ý³Ì¹ÀËãÄý¹ÌËÙÂʵĽüËÆ¹ØÏµÊ½£»½ÒʾÁËNi-B¡¢Fe-B¡¢Co-BºÏ½ðµÄ¿ìËÙÄý¹Ì×éÖ¯±ä»¯¹æÂÉ£»¸ø³öÁ˸ñ×Ó·¨¹ÀËãÏà·ÖÊýµÄ¸ñ×ӳߴçȡֵÒÀ¾Ý£»·¢ÏÖÁË´Ó¸ßËÙÉãӰͼÏñÊý¾Ýͬ²½²â¶¨¸ßÎÂÌõ¼þϺϽðζȺÍÃܶȵķ½·¨¡£

Éç»áÈÙÓþ

ÉÂÎ÷Ê¡ÇàÄê¿Æ¼¼ÐÂÐÇ

²»ÏÞip×¢²áËÍ37Ôª½ð±ÒÇàÄêÓ¢²Å

¿ÆÑÐÏîÄ¿

(1) ÉÂÎ÷Ê¡¿Æ¼¼ÌüÏîÄ¿, 2016KJXX-87, ¸ßÐÔÄÜÁòϵ²£Á§ÖƱ¸¼°Ôª¼þ¿ª·¢Ñо¿, ½áÌâ, Ö÷³Ö

(2) ¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ð, 51671151, Òº-¹ÌºÍ¹Ì-¹ÌÏà±äʱºÏ½ðÖиßÈÛ»¯ìØÏà, ½áÌâ, ²ÎÓë

(3) ÉÂÎ÷Ê¡¿Æ¼¼ÌüÏîÄ¿, 2014JM6225, Áòϵ²£Á§Ôª¼þģѹ¹¤ÒÕÑо¿, ½áÌâ, Ö÷³Ö

(4) ¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ð, 51401156, Ñǹ²¾§ºÍ¹ý¹²¾§ºÏ½ðµÄ·Çƽºâ¹²¾§×ª±ä, ½áÌâ, Ö÷³Ö

(5) ¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ð, 51371133, ½ðÊôÔÚ¼ÓÈÈÈÛ»¯ºÍÀäÈ´Äý¹Ì¹ý³ÌXÑо¿, ½áÌâ, ²ÎÓë

(6) ¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ð, 51101122, »ùÓÚXºÏ½ðÖ¦¾§·ÇƽºâÄý¹Ì¶¯Á¦Ñ§Ñо¿, ½áÌâ, ²ÎÓë

(7) ºáÏòÏîÄ¿, XXX¾µÓø´ºÏ²ÄÁÏÑо¿£¬ÔÚÑУ¬Ö÷³Ö

ѧÊõ³É¹û

        ½üÄêÀ´£¬Ö÷³ÖºÍ²ÎÓëÍê³É¿ÆÑÐÏîÄ¿10¶àÏָµ¼ºÍ¸¨ÖúÖ¸µ¼Ñо¿Éú±ÏÒµ30ÓàÈË£¬ÔÚ¹úÄÚÍâÖªÃûѧÊõÆÚ¿¯£º¡¶½ðÊôѧ±¨¡·¡¢Ó¢¹ú¡¶»Ê¼Òѧ»á»á¿¯¡·¡¢ÃÀ¹ú¡¶Ò±½ðѧ»á»á¿¯¡·µÈÔÓÖ¾ÉÏ·¢±íÂÛÎÄ90ÓàÆª£¬ÆäÖÐSCIÊÕ¼60ÓàÆª£¬Ò»Æª±»¹ú¼Ê²ÄÁÏÁìÓòÖªÃûÆÚ¿¯Journal   of Materials ResearchѡΪ·âÃæÎÄÕ£¬»ñµÃÊÚȨרÀû 8 Ï³ö°æÒëÖø 1 ±¾£¬»ñµÃÈí¼þÖø×÷Ȩ1 Ïî¡£

[1]  Junfeng Xu, Jitao Cao, Wenwen Fan. Crystallization   Behavior of As40Se60 Glass. Infrared Physics &   Technology, 2023: 130:104628.

[2]  Junfeng Xu, Tao Zhang. On the eutectic transition of   undercooled hypoeutectic Ni-B alloy in the differing heat extraction process.   Materials Letters: X, 2022, 13:100128.

[3]  Junfeng Xu, Baodong Zhang, Jitao Cao. Effect of adding   CsI on properties of Ge20Sb10Se65Te5   glass. Infrared Physics & Technology, 2022,126: 104370.

[4]  Junfeng Xu, Tao Zhang, Peter K Galenko. Rod eutectic   growth in bulk undercooled melts. Mathematical Methods in the Applied Sciences,   2022, 45(13): 8022-8031.

[5]  Junfeng   Xu, Dandan Fan, Tao Zhang. The effect of   superheat on the nucleation undercooling of metallic melts. Mathematical   Methods in the Applied Sciences, 2021,   44:12351-12359.

[6]  Peter K Galenko,   Junfeng Xu. Rapid eutectic growth: from rod growth to diffusionless   solidification. Philosophical transactions of the Royal Society A,   2022(2217):380.

[7]  Junfeng   Xu, Peter K. Galenko. Effects of local   nonequilibrium in rapid eutectic solidification¡ªPart 1: Statement of the   problem and general solution. Mathematical Methods in the Applied Sciences,   2021, 44: 12211-12220.

[8]  Junfeng   Xu, Markus Rettenmayr, Peter K. Galenko.   Effects of local nonequilibrium in rapid eutectic solidification¡ªPart 2:   Analysis of effects and comparison to experiment. Mathematical Methods in the Applied   Sciences, 2021, 44:12271-12282.

[9]  Ðí¾ü·æ,   Õű¦¶«,   Peter K Galenko.º¬Óл¯ºÏÎïÏàµÄ¹²¾§×ª±äÀíÂÛÄ£ÐÍ. ½ðÊôѧ±¨,   2021,57(10):1320-1332

[10]   Junfeng   Xu, Ying Xiao,   Zengyun Jian. Observe the temperature curve for solidification from   high-speed video image. Journal of Thermal Analysis and Calorimetry,   2021, 146, 2273-2277.

[11]   Junfeng   Xu, Tian Yang,   Zengyun Jian.. The recalescence rate of cooling   curve for undercooled solidification. Scientific Reports. 2020,10:1380.  

[12]   Ningning   Yin, Junfeng Xu, Fang¡¯e Chang, Zengyun Jian, Chuanlei Gao. Effect   of Te proportion on the properties of Ge25Sb10Se65-xTex chalcogenide glasses.   Infrared Physics and Technology, 2019, 96:361-365.

[13]   J.F. Xu, T. Yang.   Z. Li, et al. The recalescence rate of cooling   curve for undercooled solidification, Scientific Reports.   2020,10:1380..

[14]   J.F. Xu,   G. Sun, Z. Liu, et al.  Preparation   and properties of Ge4Se96 glass. Infrared Physics   and Technology, 2018, 89: 59-63.

[15]   Z.   Liu, J.F. Xu*, Y. Wang, et   al. Calorimetric studies on   Ge23Se67Sb10-0.5%RbI glass.Optic.2017,142:124-134.

[16]   ÁõÕñͤ,Ðí¾ü·æ*, ¼áÔöÔË,   µÈ.   Ge4Se96ºìÍâ²£Á§µÄÈÈÁ¦Ñ§ÐÔÄÜ. Ï¡ÓнðÊô²ÄÁÏÓ빤³Ì,    2019,3 810-814.

[17]   Z.   Liu, J.F. Xu*, Y. Wang, et   al.  Calorimetric study on Ge23Se67Sb10¨C0.5CsCl   glass. Journal of Thermal Analysis and Calorimetry, 2018, 132:   103-111.

[18]   Z.   Liu, J.F. Xu*, Y. Wang, et   al. Specific Heat Measurement of Ge7.4Se92.6   Glass. Journal of Thermal Analysis and Calorimetry, 2018, 131:   3133-3138.

[19]   D.   Fan, J.F. Xu*, Z.Y. Jian, et   al. Effect of Superheated Temperature and   Cooling Rate on the Solidification of Undercooled Ti Melt. Acta   Metallurgica Sinica, 2018, 54:844-850.

[20]   J.F. Xu, B. Dang. Z. Jian. Relation of   cooling rate, undercooling and structure for rapid solidification of iron   melt, Computational Materials Science, 2017, 128:98-102.

[21]   J.F. Xu, Z.Y. Jian,   X. Lian. An application of box counting method for measuring phase   fraction, Measurement. 2017, 100C: 297-300.

[22]   J.F. Xu,   B. Dang, D. Fan, et al. Effect of Melt Superheating Treatment on the Latent   Heat Release of Sn. Metallurgical & Materials Transactions A,   2017, 48:1133-1138.

[23]   J.F. Xu, D. Zhang, F.   Liu, et al. Solidification Behavior and Cooling Curves for Hypereutectic   Fe-21 At. Pct B Alloy. Metallurgical & Materials Transactions A,   2017: 48: 1817-1826.

[24]   J.F. Xu, H. Cheng,   Z.Y. Jian, et al. Observations of   fractal patterns induced on surface of chalcogenide glass. Optik.   2016, 127: 11258¨C11262.

[25]   J.F.   Xu, L. Diao, J.H. Yan et al. In-situ   observations of the rapid solidification for undercooled Al30Si70 alloy melt.   Journal of Materials Research, 2016, 31: 222-231.

[26]   J.F.   Xu, D.   Zhang, F.   Liu. Multi-transformations in rapid solidification of highly undercooled hypoeutectic   Ni-Ni3B alloy melt. Journal of Materials Research,   2015. 30: 3307-3315.

[27]   J.F.   Xu, F.Liu, D. Zhang. An analytical model   for solidification of undercooled metallic melt. Journal   of Thermal Analysis and Calorimetry.   2015, 119: 273-280.

[28]   J.F.   Xu, F.Liu,   M. Zhu. Differential scanning calorimetry studies on Ni-Ni3B alloys. Materials   Science Forum, 2015, 807: 556-559.

[29]   D.   Zhang, J.F.   Xu*, F.Liu. In situ observation of   the competition between metastable and stable phases in solidification of   undercooled Fe-17at.%B alloy melt. Metallurgical and Materials   Transactions A. 2015,46:5232-5239.

[30]   F.Liu,   J.F. Xu*, D. Zhang, Z.Y. Jian. Solidification   of highly undercooled hypereutectic Ni-Ni3B alloy melt, Metallurgical   and Materials Transactions A, 2014, 45:4810-4819.

[31]   J.F.   Xu, F. Liu,   D. Zhang, Phase selection of undercooled solidification   of Ni-4.5 wt pct B alloy, Journal of Materials Research, 2013, 28:3347-3354.   

[32]   J.F.   Xu, F. Liu, D. Zhang. In situ observation of   solidi?cation of undercooled hypoeutectic Ni¨CNi3B alloy melt, Journal   of Materials Research, 2013,28:1891-1902.

[33]   J.F.   Xu, F. Liu, B. Dang. Phase selection in   undercooled Ni-3.3 wt Pct B alloy melt, Metallurgical and Materials   Transactions A, 2013, 44:1401-1408,.

[34]   J.F.   Xu, F. Liu, X.L Xu, et al. Undercooled   solidification of Ni-3.3 wt%B alloy and cooling curve description, Materials   Science and Technology, 2013, 29:36-42.

[35]     J.F. Xu,   F. Liu, X.L. Xu, et al. Determination of solid fraction from cooling curve, Metallurgical   and Materials Transactions A, 2012,43:1268-1276.

[36]   J.F.   Xu, F. Liu, K. Zhang, et al. Simple   approach for description of undercooled solidification, Materials Science   and Technology, 2012,28, 274-281.

[37]   J.F.   Xu, F. Liu, S.J. Song, K. Zhang, Parameter   determination of the critical nucleation frequency in solidification of the   undercooled metallic melts, Materials Science and Technology, 2012, 28:   690-694.

[38]   J.F.   Xu, F. Liu, D. Zhang, K. Zhang, Comparison   of baseline method and DSC measurement for determining phase fractions, Materials   Science and Technology, 2012, 28, 1420-1425.

[39]   J.F.   Xu, F. Liu. Baseline method   for determining the solid fraction. Advanced   Materials Research, 2012, 562-564:   409-413.

[40]   J.F.   Xu, F. Liu, S.J. Song, et al. Application   of recipes for isothermal and isochronal solid-state transformations. Journal of Non-Crystalline Solids, 2010,356:1236-1245.  

[41]   J.F.   Xu, F. Liu, Z.Y. Jian, et al. Phase   transformation kinetics of Ge23Se67Sb10   glass. Journal of Non-Crystalline Solids, 2010,356: 2198-2202.

[42]   J.F.   Xu, Z.Y. Jian, F.E Chang, M. Qu. Preparation   and Properties of Ge23Se67Sb10 Glass.   Rare Metal Materials And Engineering, 2008, 37: 740-743.

רÀû£º

[1]  Ðí¾ü·æ;   ³£·¼¶ð;   Ѧ¸ÄÇÚ;   ³É»¢;   ÖìÂú;   ¼áÔöÔË;   »ùÓÚÑÎÔ¡´ã»ð·½·¨ÖƱ¸´ó³ß´çÁòϵºìÍâ²£Á§µÄÖÆ±¸·½·¨,   2018-7-6, Öйú, 201510995703.7

[2]  Ðí¾ü·æ;   µ³²©;   ÕŵÏ;   ÖìÂú;   ³£·¼¶ð;   ¼áÔöÔË;   Ò»ÖÖÏßÇиî·Ç¹æÔò¹¤¼þµÄ¼Ð¾ß,   2016-6-29, Öйú, 201620052772.

[3]   ÕÅÎÄÐË;   Ðí¾ü·æ;   ÍõöÎ;   Íõϲ·æ;   Àî¸ßºê;   Ò»ÖÖÊÊÓÃÓÚ±¡Æ¬ÐÎSiCp/Al¸´ºÏ²ÄÁϵijÉÐÍ·½·¨,   2022-02-11, Öйú, 202011085750.5.

[4]  ÕÅÎÄÐË;   Ðí¾ü·æ;   ÍõöÎ;   Íõϲ·æ;   Àî¸ßºê;   Ò»ÖÖSiCp/Al¸´ºÏ²ÄÁϵijÉÐÍ·½·¨,   2021-10-26, Öйú,202011084716.6 .

[5]  ÕÅÎÄÐË;   Ðí¾ü·æ;   ÍõöÎ;   Íõϲ·æ;   Àî¸ßºê;   Ò»ÖÖÊÊÓÃÓÚ±¡Æ¬ÐÎSiCp/A1¸´ºÏ²ÄÁϵijÉÐÍÉ豸,   2021-5-25, Öйú, 202022257241.8.

[6]  ÕÅÎÄÐË;   Ðí¾ü·æ;   ÍõöÎ;   Íõϲ·æ;   Àî¸ßºê;   Ò»ÖÖSiCp/Al¸´ºÏ²ÄÁϵijÉÐÍÉ豸,   2021-5-25, Öйú,202022255748.X.

[7]  Ðí¼ªÐÅ;   Ðí¾ü·æ;   ÕÅÎÄÈÙ;   À­ÉìÊÔ¼þ¼ÐÍ·;   2011-1-20, Öйú, 2010302122364.

ÒëÖø£º

         Ðí¾ü·æ,   µ³²©,   ÁõÕñͤ Òë,   [µÂ]ÓÚ¶û¸ù.²¼ÀïÂå Öø.   ¶àÔªºÏ½ðÈÛÌåµÄÈÈÎïÀíÐÔÄÜ,   Î÷°²½»Í¨´óѧ³ö°æÉç,   2023.

Èí¼þÖø×÷Ȩ£º

         Ðí¾ü·æ   ; ³¬³¤ÎļþÒ»¼ü²éÖØÈí¼þV1.0,   2022SR0615576, ԭʼȡµÃ, È«²¿È¨Àû,   2022-2-28.

 

 

Íõ½¨Àû


»ù±¾ÐÅÏ¢

ÐÕÃû£ºÍõ½¨Àû                           ³öÉúÄêÔ£º1981.03

ѧÀú£º²©Ê¿Ñо¿Éú                    Ñ§Î»£º²©Ê¿

Ö°³Æ£º½ÌÊÚ¡¢ ²©Ê¿Éúµ¼Ê¦         Ö°Îñ£ºÎÞ                          

ѧԺ£º²»ÏÞip×¢²áËÍ37Ôª½ð±Ò             ÁªÏµ·½Ê½£ºjlwang@xatu.edu.cnwjl810325@163.com

ѧϰ¾­Àú

2000.09 ¨C 2004.07    Î÷±±´óѧ£¬»¯Ñ§Ïµ»¯Ñ§»ùµØ°à£¬Ñ§Ê¿

2004.09 ¨C 2009.06    Öйú¿ÆÑ§Ôº³¤´ºÓ¦Óû¯Ñ§Ñо¿Ëù£¬²©Ê¿

¹¤×÷¾­Àú

2009.07 ¨C 2012.12   ²»ÏÞip×¢²áËÍ37Ôª½ð±Ò£¬²»ÏÞip×¢²áËÍ37Ôª½ð±Ò£¬½²Ê¦

2012.12 ¨C 2018.11   ²»ÏÞip×¢²áËÍ37Ôª½ð±Ò£¬²»ÏÞip×¢²áËÍ37Ôª½ð±Ò£¬¸±½ÌÊÚ

2018.11¡ªÖÁ½ñ       ²»ÏÞip×¢²áËÍ37Ôª½ð±Ò£¬²»ÏÞip×¢²áËÍ37Ôª½ð±Ò£¬½ÌÊÚ

Ñо¿·½Ïò

£¨1£©Ã¾¡¢ÂÁºÏ½ð¼°Æä¸´ºÏ²ÄÁϳɷÖ/½á¹¹Éè¼Æ¼°ÐÔÄÜÑо¿£»

£¨2£©Ã¾ºÏ½ð¸¯Ê´Óë±íÃæ·À»¤£»

£¨3£©ÉúÎïÒ½Óÿɽµ½âþ»ù·Ç¾§²ÄÁÏ¡£

ÕÐÉúÐÅÏ¢

ÿÄêÕÐÊÕ˶ʿÉú3-4Ãû£¬²©Ê¿Éú1-2Ãû¡£»¶Ó­¾ßÓвÄÁÏ¡¢ÎïÀí£¬»¯Ñ§µÈרҵ±³¾°µÄÓÅÐãѧÉú±¨¿¼¡£

½ÌÓý½Ìѧ

½²ÊÚ¡¶²ÄÁÏ¿ÆÑ§»ù´¡¡·£¨Ë«Óï¿Î£©¡¢¡¶×¨ÒµÍâÓï¡·¡¢¡¶ÎÞ»ú¼°·ÖÎö»¯Ñ§¡·¡¢¡¶ÎÞ»ú²ÄÁϺϳÉÓëÖÆ±¸¡·ºÍ¡¶ÆÕͨ»¯Ñ§¡·µÈ±¾¿Æ¿Î³Ì£¬ºÍÑо¿Éú¡¶¸´ºÏ²ÄÁϽçÃæ¡·¿Î³Ì¡£

ÈÙ»ñ²»ÏÞip×¢²áËÍ37Ôª½ð±ÒÇàÄê½Ìʦ½²¿Î±ÈÈüÈýµÈ½±¡¢ÓÅÐãÖ¸µ¼½Ìʦ³ÆºÅ¡£

Ö¸µ¼µÄÑо¿ÉúÈÙ»ñµÚÎå½ìÈ«¹úÉúÎïҽѧ¹¤³Ì´´ÐÂÉè¼Æ¾ºÈüÈýµÈ½±¡¢ÉÂÎ÷Ê¡µÚËĽìÑо¿Éú´´Ð³ɹûÕ¹ÈýµÈ½±£¬µÚÒ»½ì²»ÏÞip×¢²áËÍ37Ôª½ð±Ò΢½á¹¹ÉãÓ°´óÈüÒ»µÈ½±£¨1Ï¡¢¶þµÈ½±£¨3Ï¡¢ÈýµÈ½±£¨1Ï¡£

¿ÆÑÐÏîÄ¿

×÷ΪÏîÄ¿¸ºÔðÈ˳е£µÄ¿ÆÑÐÏîÄ¿£º

1. ¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÇàÄê»ù½ð£ºÉúÎï½µ½âþ»ù·Ç¾§ºÏ½ðÉè¼Æ¡¢ÖƱ¸¼°Æä½µ½âÐÐΪ;

2. ÉÂÎ÷Ê¡ÖØµãÑз¢¼Æ»®--Á½Á´ÈÚºÏÏîÄ¿£º¸ßÆ·ÖÊþºÏ½ðÌØÖÖÖýÔì³ÉÐͼ¼ÊõÑо¿£»

3. ÉÂÎ÷Ê¡¿Æ¼¼Í³³ï´´Ð¹¤³Ì¼Æ»®ÏîÄ¿£º¸ßÆ·ÖÊþ¼°Ã¾ºÏ½ð²úÒµ»¯¹Ø¼ü¼¼ÊõÑо¿¼°Ó¦ÓÃʾ·¶¡ª¡ª¸ßÆ·ÖÊѹÖýþºÏ½ðÈÛÖý²úÒµ»¯¹Ø¼ü¼¼ÊõÑо¿;

4. ÉÂÎ÷Ê¡¿Æ¼¼Ìü×ÔÈ»¿ÆÑ§»ù´¡Ñо¿¼Æ»®ÏîÄ¿£ºÄý¹ÌÎö³ö¾§ÌåÏà¶ÔÒ½ÓÃMg-Zn-Ca·Ç¾§ËÜÐԺ͸¯Ê´ÐÐΪµÄÓ°Ïì;

5. ÉÂÎ÷Ê¡½ÌÓýÌüÖØµãÏîÄ¿£¨ÖصãʵÑéÊÒÀࣩ£ºÔ­Î»ÄÚÉúÖ¦¾§ÔöÈÍÉúÎïÒ½ÓÃþ»ù·Ç¾§¸´ºÏ²ÄÁÏÖÆ±¸¼°ÐÔÄÜ;

6. ÎÞÈË»úþºÏ½ð´«¶¯ÏäÌåÖýÔì³ÉÐμ¼ÊõÑо¿£¨ºÏ×÷µ¥Î»£ºÖйú±±·½·¢¶¯»úµÚ70Ñо¿Ëù£©;

7. ÉÂÎ÷Ê¡¹âµç¹¦ÄܲÄÁÏÓëÆ÷¼þÖØµãʵÑ鿪·Å»ù½ð£ºÂÁ¡¢Ã¾ºÏ½ðÉè¼Æ¡¢±íÃæ´¦Àí¼°Æä¸¯Ê´ÐÔÄÜÑо¿;

8. ²»ÏÞip×¢²áËÍ37Ôª½ð±ÒУ³¤»ù½ðÖØµãÏîÄ¿£ºÒ½ÓÃÉúÎï¿É½µ½âþ»ù·Ç¾§²ÄÁϵÄÖÆ±¸¼°Æä¸¯Ê´ÐÔÄܵÄÑо¿¡£

×÷Ϊ¹Ç¸É³ÉÔ±²ÎÓëµÄÏîÄ¿£º

1¡¢¹ú·À973ÏîÄ¿£º¸ßÇ¿ÄÍÈÈÖýÔìÂÁºÏ½ð****Ó¦Óü¼Êõ£¬240ÍòÔª;

2¡¢×Ü×°±¸²¿¡°Ê®ÈýÎ塱¹²Óü¼ÊõÏîÄ¿£ºµÍ³É±¾****þºÏ½ðÓ¦Óü¼Êõ£¬180ÍòÔª;

3¡¢×Ü×°±¸²¿¡°Ê®ÈýÎ塱רÓü¼ÊõÏîÄ¿£º»úÌå****þºÏ½ð²ÄÁÏÑо¿£¬100ÍòÔª;

4¡¢ÉÂÎ÷Ê¡ÂÁþÇáºÏ½ð¸´ºÏ²ÄÁϼ¼Êõ´´ÐÂÍŶÓ£¬90ÍòÔª;

5¡¢ÉÂÎ÷Ê¡ÖØµãÑз¢¼Æ»®ÏîÄ¿£º¸ßÐÔÄÜþºÏ½ð¾«ÃܳÉÐͼ¼Êõ£¬90ÍòÔª¡£

ѧÊõ³É¹û

ѧÊõÂÛÎÄ

[1] Yiyi Feng(Ñо¿Éú), Jianli Wang*, Fei Li, Hongbo Duan, Zhong Yang, Yaping Bai, Jianping Li, In-situ 14H-LPSO reinforced GW93 alloy prepared from the recycling of discard components by rapid-solidification plus hot press sintering technique, Materials Science and Engineering A, 2022, 834, 142634. (SCI)

[2] Jia-ni Qin(Ñо¿Éú), Jian-li Wang*, Juan Pei, Bi-wei Xiong, Ya-ping Lei, Jian-ping Li. A cage-structured protecting coating prepared on pure magnesium by hydrothermal treatment with enhanced corrosion properties, Materials Today Communications, 2020, 25: 101645. (SCI)

[3] Ô¬æ¯ÄÈ(Ñо¿Éú)£¬Íõ½¨Àû*£¬ÑîÖÒ£¬¹ùÓÀ´º£¬ÀƽºÏ½ð³É·Ö¶ÔMg-Zn-YºÏ½ð×¼¾§ÐÎòºÍÌå»ý·ÖÊýµÄÓ°Ï죬²ÄÁϹ¤³Ì. 2019,47(03):116-122. (EI, ÆÚ¿¯·âÃæÎÄÕÂ)

[4] Åá¾ê(Ñо¿Éú)£¬Íõ½¨Àû*£¬ÑîÖÒ£¬Ðì¹ãÌΣ¬Àƽ.ECAP±äÐζÔMg-4.5Zn-1CaºÏ½ðÏÔ΢×éÖ¯¼°¸¯Ê´ÐÔÄܵÄÓ°Ï죬Èȼӹ¤¹¤ÒÕ. 2019,48(15):51-55.

[5] ÖìÃÀÁá(Ñо¿Éú)£¬Íõ½¨Àû*£¬Åá¾ê£¬ÑîÖÒ£¬¹ùÓÀ´º£¬Àƽ. MgZnCaºÏ½ðµÄ·Ç¾§ÐγÉÄÜÁ¦¼°ÆäÔÚÄ£ÄâÌåÒºÖеĸ¯Ê´ÐÔÄÜ£¬²ÄÁÏÈÈ´¦Àíѧ±¨, 2019,40(02):32-39.

[6] Jianli Wang*, Yin Wan, Meiling Zhu, et al. Effect of Sr element on the glass forming ability and corrosion properties of bulk Mg-Zn-Ca alloys, Rare Metal Materials and Engineering, 2018, 47(7):2151-2158 (SCI).

[7] Jianli Wang*, Yin Wan, Zhijun Ma, et al. Glass forming ability and corrosion performance of Mn doped Mg-Zn-Ca amorphous alloys for biomedical applications, Rare Metals, 2018,37(7):579-586(SCI).

[8] Wei Yang, Dapeng Xu, Jianli Wang, Xiaofei Yao, Jian Chen, Microstructure and corrosion resistance of micro arc oxidation plus electrostatic powder spraying composite coating on magnesium alloy, Corrosion Science, 2018, 136:174-179. (SCI)

[9] Wei Yang, Dapeng Xu, Xiaofei Yao, Jianli Wang, Jian Chen, Stable preparation and characterization of yellow micro arc oxidation coating on magnesium alloy, Journal of Alloys and Compounds, 2018, 745:609-616.

[10] Íõ½¨Àû*£¬Åá¾ê£¬Ô¬æ¯ÄÈ£¬ÖìÃÀÁᣬÑîÖÒ£¬Àƽ. SnÔªËØ¶ÔÉúÎïÒ½ÓÃþºÏ½ðMg-4.5Zn-SnÏÔ΢×éÖ¯ºÍÄÍÊ´ÐÔÄܵÄÓ°Ïì²ÄÁÏÈÈ´¦Àíѧ±¨, 2018£¬39(6):26-34.

[11] Jian-li Wang, Wei Yang, Da-peng Xu, Xiao-Fei Yao, Effect of K2TiO(C2O4)2 addition in electrolyte on the microstructure and tribological behaviors of micro-arc oxidation coatings on aluminum alloy, Acta Metallurgica Sinica-English Letters, 2017, 30£¨11£©£º1109-1118

[12] Íõ½¨Àû*£¬ÍòÒø£¬ÖìÃÀÁᣬ¹ùÓÀ´º£¬ÑîÖÒ£¬Àƽ. SnÔªËØ¶ÔMg-Zn-CaºÏ½ð·Ç¾§ÐγÉÄÜÁ¦ºÍÄÍÊ´ÐÔµÄÓ°Ïì²ÄÁÏÈÈ´¦Àíѧ±¨£¬2017,38(5):42-48.

[13] Íõ½¨Àû*£¬ÍòÒø£¬Âí±ó£¬¹ùÓÀ´º£¬Àƽ½ü¹²¾§Mg-Zn-CaºÏ½ð·Ç¾§ÐγÉÄÜÁ¦ºÍ¸¯Ê´ÐÔÄÜÑо¿£¬²»ÏÞip×¢²áËÍ37Ôª½ð±Òѧ±¨£¬2017, 37(8):613-620.

[14] Wei Yang, Jianli Wang, Dapeng Xu, Peiling Ke, Jianping Li, Microstructure and properties of duplex coatings on magnesium alloy, Surface Engineering, 2016, 32: 601-606 . (SCI)

[15] Wang Jianli*, Guo Yongchun, Li Jianping, Yang Zhong, Kamado Shigehar, Wang Limin, Microstructure, texture and mechanical properties of extruded Mg-5Al-2Nd-0.2Mn alloy, Journal of Alloys and Compounds, 2015, 653: 100-107. (SCI)

[16] Wei Yang, Jianli Wang, Dapeng Xu, Jinhua Li,Tao Chen, Characterization and formation mechanism of grey micro arc oxidation coatings on magnesium, Surface and Coatings Technology, 2015, 283: 281-285. (SCI)

[17] Íõ½¨Àû*Âí ±óÕŠ骰׺£ÑàËïÃ÷Ô³ÌÁø¹ùÓÀ´ºÀƽÉúÎï¿É½µ½âÒ½ÓÃþºÏ½ðÑо¿½øÕ¹Èȼӹ¤¹¤ÒÕ, 2015, 44: 5-11.

[18] Íõ½¨Àû*ÍõƼ¹ùÓÀ´ºÑîÖÒÀƽ. GW93þºÏ½ð±íÃæÎýËáÑλ¯Ñ§×ª»¯Ä¤¹¤ÒÕÑо¿Ï¡ÓнðÊô²ÄÁÏÓ빤³Ì, 2014, 43: 1397-1402. (SCI)

[19] Âí±óÍõ½¨Àû*¹ùÓÀ´ºÕÅ骰׺£ÑàËïÃ÷Ô³ÌÁø. Caº¬Á¿¶ÔMg-CaºÏ½ð×éÖ¯ÓëÁ¦Ñ§ÐÔÄܵÄÓ°ÏìÈȼӹ¤¹¤ÒÕ£¬2014, 43: 4-8.

[20] Jianli Wang*, Jianping Li, Ping Wang, Yongchun Guo, Zhong Yang. Effect of Zn content on the Microstructure and Corrosion Behavior of Mg-7Y-0.6Zr Alloy, Materials Science Forum, 2013, 765: 612-617. (EI)

[21] Wang Jianli*, Wang Lidong,Wu Yaoming, Wang Limin. Effects of samarium on microstructures and tensile properties of Mg¨C5Al¨C0.3Mn alloy, Materials Science and Engineering A, 2011, 528: 4115-4119. (SCI)

[22] Wang Jianli, Shi Ning, Wang Lidong, Cao Zhanyi, Wang Limin, Li Jianping. Effect of zinc and mischmetal on microstructure and mechanical properties of Mg-Al-Mn alloy, Journal of Rare Earths, 2010, 28: 794-797. (SCI)

[23] Jianli Wang, Hanwu Dong, Lidong Wang, Yaoming Wu, Limin Wang. Effect of hot rolling on the microstructure and mechanical properties of Mg-5Al-0.3Mn-2Nd alloy, Journal of Alloys and Compounds, 2010, 507: 178-183. (SCI)

[24] Jianli Wang, Wen HU, Lidong Wang, Yaoming WU, Limin Wang. Microstructure and mechanical properties of Ti-based metallic glass matrix composites, International Journal of Modern Physics B, 2009, 23: 1260-1264. (SCI)

[25] Jianli Wang, Ning Shi, Lidong Wang, Yaoming Wu, Zhanyi Cao, Limin Wang. Preparation and Characterization of As-cast and Hot-rolled Mg-3Al-0.5Mn-0.5Zn-1MM alloy, Materials Characterization, 2009, 60: 1507-1511. (SCI)

[26] Jianli Wang, Ruili Liao, Lidong Wang , Yaoming Wu, Zhanyi Cao, Limin Wang. Investigations of the Properties of Mg-5Al-0.3Mn-xCe (x = 0~3, wt.%) Alloys, Journal of Alloys and Compounds, 2009, 477: 341-345. (SCI)

[27] Jianli Wang, Lidong Wang, Yaoming Wu, Limin Wang. The Development of Mg-Al-RE Wrought Alloys, 8th International Conference on Magnesium alloys and their Applications, 26-29 Oct. 2009, Weimar, Germany. Magnesium (edited by K.U. Kainer), 645-650, Wily-VCH GmbH & Co. KGaA.

[28] Ning Liu, Jianli Wang, Lidong Wang, Yaoming Wu, Limin Wang. Electrochemical Corrosion Behavior of Mg-5Al-0.4Mn-xNd in NaCl Solution, Corrosion Science, 2009, 51: 1328-1333. (SCI)

[29] Ning Liu, Jianli Wang, Lidong Wang, Yaoming Wu, Limin Wang, Electrochemical Corrosion Behavior of Mg-5Al-0.4Mn-xNd in NaCl Solution, Corrosion Science, 2009, 51(6): 1382-1333. (SCI)

[30] Wenlong Xiao, Shusheng Jia, Jianli Wang, Jie Yang, Limin Wang. The influence of mischmetal and tin on the microstructure and mechanical properties of Mg¨C6Zn¨C5Al-based alloys, Acta Materialia, 2008, 56(5):934-941. (SCI)

[31] Jie Yang, Jianli Wang, Lidong Wang, Yaoming Wu, Limin Wang, Hongjie Zhang, Refinement of edge-to-edge matching model and its application in the Mg17Al12/¦Á-Mg and ¦Á-Y/¦Á-Mg systems, Intermetallics, 2009, 17(3):104-108. (SCI)

[32] Wen Hu, Jianli Wang, Lidong Wang, Yaoming Wu, Limin Wang, Electrochemical hydrogen storage in (Ti1?xVx)2Ni (x = 0.05¨C0.3) alloys comprising icosahedral quasicrystalline phase, Electrochimica Acta, 2009, 54(10):2770-2773. (SCI)

 ÈÙ»ñ½±Àø

1¡¢2019Äê ÉÂÎ÷Ê¡¿ÆÑ§¼¼Êõ½ø²½½±¶þµÈ½±£¨¸ßÆ·ÖÊþºÏ½ð¸´ºÏ²ÄÁÏÓëЭºÍ¸ÄÐÔ·À»¤¹Ø¼ü¼¼Êõ¼°Ó¦Óã©;

2¡¢2017Äê ¹ú·À¿ÆÑ§¼¼Êõ½ø²½½±¶þµÈ½±£¨¸ßÇ¿ÄÍÈÈÄÍʴþϡÍÁºÏ½ð¹Ø¼ü¼¼ÊõÓëÓ¦Óã©;

3¡¢2017Äê ÉÂÎ÷¸ßµÈѧУ¿ÆÑ§¼¼Êõ½±Ò»µÈ½±(¸ßÐÔÄÜ´ó³ß´çþºÏ½ð³ÉÐ͹ؼü¼¼ÊõÑо¿¼°²úÒµ»¯);

4¡¢2016Äê ²»ÏÞip×¢²áËÍ37Ôª½ð±Ò¿ÆÑ§¼¼Êõ½±ÌصȽ±(¸ßÐÔÄÜ´ó³ß´çþºÏ½ð³ÉÐ͹ؼü¼¼ÊõÑо¿¼°²úÒµ»¯);

5¡¢2016Äê ²»ÏÞip×¢²áËÍ37Ôª½ð±ÒÇàÄê½Ìʦ½²¿Î±ÈÈüÈýµÈ½±;

6¡¢2015Äê ²»ÏÞip×¢²áËÍ37Ôª½ð±ÒÓÅÐãÇàÄê½Ìʦ½±Àø»ù½ð;

7¡¢2010Äê ÉÂÎ÷¸ßµÈѧУ¿ÆÑ§¼¼Êõ½±¶þµÈ½±£¨¸ßÇ¿ÈÍÄÍÈÈþºÏ½ð¼°Æä¸´ºÏ²ÄÁÏÉè¼Æ¡¢ÖƱ¸ÓëÓ¦Óã©;

8¡¢2010Äê ÉÂÎ÷Ê¡¹ú·À¼¼Êõ½±ÀøÒ»µÈ½±£¨ÐÂÐ͸ßÇ¿ÄÍÈÈþϡÍÁºÏ½ð¼°Æä¸´ºÏ²ÄÁϹؼü¼¼Êõ¼°Ó¦Óã©.

 

 

 

 

 

 

°×ÑÇÆ½

»ù±¾ÐÅÏ¢

ÐÕÃû: °×ÑÇÆ½ ³öÉúÄêÔ£º1985Äê2ÔÂ

ѧÀú: ²©Ê¿Ñо¿Éú ѧλ: ¹¤Ñ§²©Ê¿

Ö°³Æ: ½ÌÊÚ¡¢²©Ê¿Éúµ¼Ê¦ Ö°Îñ: ½Ìʦ

ѧԺ: ²»ÏÞip×¢²áËÍ37Ôª½ð±Ò     ÁªÏµ·½Ê½£ºjingpingxue2004@163.com

ѧϰ¾­Àú

2010/9 - 2013/12£¬Î÷°²½»Í¨´óѧ£¬²ÄÁÏ¿ÆÑ§Ó빤³ÌѧԺ£¬²©Ê¿

2007/9 - 2010/6£¬À¼ÖÝÀí¹¤´óѧ£¬²ÄÁÏ¿ÆÑ§Ó빤³ÌѧԺ£¬Ë¶Ê¿

2003/9 - 2007/6£¬À¼ÖÝÀí¹¤´óѧ£¬²ÄÁÏ¿ÆÑ§Ó빤³ÌѧԺ£¬Ñ§Ê¿

¹¤×÷¾­Àú

2022/01 ¨C ÖÁ½ñ£¬²»ÏÞip×¢²áËÍ37Ôª½ð±Ò£¬²»ÏÞip×¢²áËÍ37Ôª½ð±Ò£¬½ÌÊÚ

2016/10 ¨C 2021.12£¬²»ÏÞip×¢²áËÍ37Ôª½ð±Ò£¬²»ÏÞip×¢²áËÍ37Ôª½ð±Ò£¬¸±½ÌÊÚ

2013/12 ¨C 2016/09£¬²»ÏÞip×¢²áËÍ37Ôª½ð±Ò£¬²»ÏÞip×¢²áËÍ37Ôª½ð±Ò£¬½²Ê¦

ÕÐÉúÐÅÏ¢

ÿÄêÕÐÊÕ˶ʿÉú2-4Ãû£¬²©Ê¿Éú1-2Ãû¡£

½ÌÓý½Ìѧ

Ö÷½²¿Î³Ì£º±¾¿ÆÉú¿Î³Ì¡¶½ðÊôµÄÄ¥Ëð¡·¡¢Ñо¿Éú¿Î³Ì¡¶ÏÖ´ú²ÄÁÏÑо¿·½·¨¡·µÈ¡£

Ñо¿·½Ïò

Ö÷ÒªÑо¿ÁìÓò£ºÂÁ»ùÄÍÄ¥²ÄÁÏ¡¢ÇáÖʸßÐÔÄÜÌú»ùºÏ½ðµÄÑз¢¡£

¿ÆÑÐÏîÄ¿

Ö÷³Ö°üÀ¨¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÇàÄê»ù½ðÏîÄ¿µÈ¹ú¼Ò¼¶ÏîÄ¿2Ïʡ²¿¼¶ÏîÄ¿2Ïî¡¢Ìü¾Ö¼¶ÏîÄ¿2ÏÆóÒµ¹¥¹ØÏîÄ¿5Ïî¡£×÷ΪÖ÷ÒªÍê³ÉÈ˲ÎÓë¹ú·À973¡¢¹ú¼Ò973ÏîÄ¿¼°¹ú·À¹²Óü¼ÊõÏîĿʮÓàÏî¡£

ѧÊõ³É¹û

·¢Ã÷רÀû

[1] °×ÑÇÆ½, Àƽ£¬ ¹ùÓÀ´º£¬ÑîÖÒ£¬Ìï¼Ñ. ¸ßÇ¿³¬Ï¸(TixBy-TiC)/7075Al¸´ºÏ²ÄÁϼ°ÆäÖÆ±¸·½·¨. 2016.3£¬Öйú£¬ZL201610171287.3

[2] °×ÑÇÆ½£¬Àƽ£¬¹ùÓÀ´º£¬ÑîÖÒ£¬ÕÅæÃÓ±. Ò»ÖÖÇáÖʸßÈȵ¼ÂÊFe-Al»ùºÏ½ð¼°ÆäÖÆ±¸·½·¨. 2016.9£¬Öйú£¬ZL 201610824219.2

[3] °×ÑÇÆ½, Àƽ£¬ÑîÖÒ£¬¹ùÓÀ´º£¬Â޼ѼÑ£¬³É³¬. µÍÃܶÈÄÍÈÈÌú»ùºÏ½ð¼°ÆäÖÆ±¸·½·¨. 2020.03£¬Öйú£¬ZL201810426362.5.

[4] °×ÑÇÆ½, Àƽ£¬¹ùÓÀ´º£¬ÑîÖÒ£¬ÁõÃÈÃÈ. Ò»ÖÖº¬Áò¸¯Ê´¹¤¿öÏÂÂÁ»ùÄÍÄ¥²ÄÁϼ°ÆäÖÆ±¸·½·¨. 2020.08£¬Öйú£¬ZL201811452382.6.

[5] ÐϽ¨¶«, °×ÑÇÆ½, Íõ½¨, Îâê»ÁÁ.Ò»ÖÖFe3Al-Al2O3¸´ºÏ²ÄÁϵÄÖÆ±¸·½·¨. 2012.11£¬Öйú£¬ZL 201010591647.8.

´ú±íÐÔѧÊõÂÛÎÄ

[1] Yaping Bai, Jin Zhou, Jianping Li, Zhong Yang. B2-ordered NiAl content on microstructure, mechanical and oxidation properties of FeAl intermetallic compounds. Journal of Materials Research and Technology.2022(6):1875-1888.

[2] Yaping Bai, Dongdong Jiao, Jianping Li, Zhong Yang. Effect of Nb content on the stacking fault energy, microstructure and mechanical properties of Fe-25Mn-9Al-8Ni-1C alloy. Materials Today Communications. 2022(31):103554.

[3] Yaping Bai, Keke Tian, Jianping Li, Zhong Yang. Microstructure and Oxidation Behavior of Fe-25Mn-9Al-8Ni-1C-xTi Alloy Prepared by Vacuum Arc Melting. Materials. 2021,14(24):7722-1¨C19.

[4] Yaping Bai, Jiale Wei, Naqing Lei, Jianping Li, Yongchun Guo, Mengmeng Liu. Effect of VN and TiB2-TiCx Reinforcement on Wear Behavior of Al 7075-Based Composites. Materials, 2021, 14(12): 3389-1-3389-16.

[5] Yaping Bai, Mengmeng Liu, Jianping Li, Yongchun Guo. Tribofilm formation on the VN/7075 composite surface under sulfur containing boundary lubrication. Proc IMechE Part J: J Engineering Tribology. 2020,234(11):1726¨C1734.

[6] Yaping Bai, Jianping Li, Jiajia Luo, Yongchun Guo. Effect of Diamond Surface Pretreatment and Content on the Microstructure and Mechanical and Oxidation Behaviour of NiAl/Fe-Based Alloys. Scanning. 2020(2020):5149734.

[7] Yaping Bai, Chao Cheng, Jianping Li, JiaJia Luo, Zhong Yang. Effect of AlN on microstructure, mechanical and thermophysical properties of NiAl/Fe based alloys prepared by vacuum hot-pressing sintering. Vacuum.2020, 182(109785):1-8.

[8] Yaping Bai, Jianping Li, Chao Cheng, Zhong Yang. Study on microstructure and oxidation behavior of Fe¨CxMn¨C14Al¨C8Ni¨CC alloy prepared by vacuum arc melting. Materials Research Express. 2020,7(096521):1-12.

[9] °×ÑÇÆ½, Â޼ѼÑ, Àƽ, ÑîÖÒ, ¹ùÓÀ´º. ±íÃæ¼¼Êõ,ÄÉÃ×NiAlÏà¶ÔÌú»ùºÏ½ðÏÔ΢×éÖ¯¡¢Á¦Ñ§¼°Ñõ»¯ÐÔÄܵÄÓ°Ïì.2019, 48(08)£º144~150.

[10] °×ÑÇÆ½, ÁõÃÈÃÈ, Àƽ, ¹ùÓÀ´º, ÑîÖÒ, Â޼ѼÑ, ³É³¬. ²ñÓÍ·¢¶¯»ú»îÈûÓÃÂÁ»ù²ÄÁÏÑо¿½øÕ¹¼°Ê§Ð§·ÖÎö.±íÃæ¼¼Êõ, 2018, 47(06)£º161~168.

[11] Yaping Bai, Jiandong Xing,. Yongchun Guo, Jainping Li, Qian Huang, Yimin Gao. Static corrosion behavior of in-situ nanocrystalline Al2O3/Fe(Al) composites. Surface Review and Letters. 24£¨2£©(2017)1750029-1~11.

[12] Yaping Bai, ,Yongchun Guo, Jainping Li, Zhong Yang, Jia Tian. Effect of Al2O3 nanoparticle reinforcement on the mechanical and high-temperature tribological behavior of Al-7075 alloy. Proc IMechE Part J:J Engineering Tribology .231£¨7£©(2017)900-909.

[13] Yaping Bai, Jiandong Xing, Yongchun Guo, Jianping Li, Yuanyuan He, Shengqiang Ma. Effect of Cr on microstructure, mechanical properties, and wear behavior of in situ 20 wt.%Al2O3/Fe-25Al composites. Journal of Materials Engineering and Performance. 24 (2015) 936-945.

[14] Yaping Bai, Jiandong Xing, Yuanyuan He. Zhen Liu, Qian Huang, Shengqiang Ma, Yimin Gao. Tribological behavior of in-situ (Cr, Mo)/Fe3Al-20 wt.%Al2O3 composites at elevated temperatures. Proc IMechE Part J:J Engineering Tribology. 228(2014)904-912.

[15] Yaping Bai, Jiandong Xing, Zhen Liu, HaoliangWu, Shengqiang Ma, Qian Huang, Yimin Gao. Tribological properties of in situ Fe3Al-20wt% Al2O3 composites. Proc IMechE Part J:J Engineering Tribology. 227(1) (2013)67-78.

[16] Yaping Bai, Jiandong Xing, Shengqiang Ma, Yuanyuan He. Zhen Liu, Qian Huang, Yimin Gao. Effect of MoS2 on the tribological properties of in-situ Fe3Al-20wt.% Al2O3-4wt.% Cr composites. Proc IMechE Part J:J Engineering Tribology. 227 (2013)1018-1029. 

[17] Yaping Bai, Jiandong Xing, HaoliangWu, Zhen Liu, Qian Huang, Shengqiang Ma, Yimin Gao. The mechanical alloying mechanism of various Fe2O3¨CAl¨CFe systems. Advanced Powder Technology. 24 (2013) 373-381.

[18] Yaping Bai, Jiandong Xing, Zhen Liu, Shengqiang Ma, Eryong Liu, Yimin Gao. The microstructure and tribological property of in-situ Fe3Al-Al2O3 composites in argon atmosphere. Intermetallics 38 (2013) 107-115.

[19] Yaping Bai, Jiandong Xing, Shengqiang Ma, Qian Huang, Yuanyuan He, Zhen Liu, Yimin Gao. Effect of 3 at.% Cr on microstructure, corrosion resistance and tribological properties of Fe3Al-20wt.%Al2O3 composites. Materials Characterization (2013) 69-78.

[20] Yaping Bai, Jiandong Xing, Haoliang Wu, Zhen Liu, Yimin Gao, Shengqiang Ma, Study on preparation and mechanical properties of Fe3Al¨C20wt.% Al2O3 composites. Materials and Design 39 (2012)211-219.

»ñ½±Çé¿ö

ÉÂÎ÷Ê¡¸ßУµÚÎåÅúÇàÄê½Ü³öÈ˲ÅÖ§³Ö¼Æ»®¡¢ÉÂÎ÷Ê¡½ÌÓýÌü¿Æ¼¼½ø²½Ò»µÈ½±¡¢Öйú²úѧÑкÏ×÷´´Ð³ɹû½±¡¢ ¡°»¥ÁªÍø+¡±´óѧÉú´´Ð´´Òµ´óÈüÊ¡½±¡¢¡°ÌôÕ½±­¡±ÉÂÎ÷Ê¡´óѧÉú´´Òµ¼Æ»®¾ºÈüÊ¡½±¡¢Ð£¼¶ÓÅÐãÇàÄê½Ìʦ½±Àø»ù½ðµÈ¡£

ÏÄ·å

»ù±¾ÐÅÏ¢£º

ÐÕÃû£ºÏÄ·å

³öÉúÄêÔ£º1978.08

ѧÀú£ºÑо¿Éú

Ö°³Æ£º¸±½ÌÊÚ

ÁªÏµ·½Ê½£º

¹¤×÷¾­Àú£º

2003~ÖÁ½ñ  ²»ÏÞip×¢²áËÍ37Ôª½ð±Ò ²»ÏÞip×¢²áËÍ37Ôª½ð±Ò ¸±½ÌÊÚ

½ÌÓý½Ìѧ£º

Ö÷½²¿Î³Ì:¡¶½ü´ú±íÃæ¹¤³Ì½ðÊô¡·¡¢¡¶Èȼӹ¤Ä£¾ßÉè¼Æ¡·µÈ¿Î³Ì¡£

Ñо¿·½Ïò£º

ÂÁ»ù¸´ºÏ²ÄÁÏÉè¼Æ¡¢ÖƱ¸¼°¹¤³Ì»¯Ó¦Ó㻸߶ËÂÁ²Ä£¨5N6£©¼°¹¤³Ì»¯×°±¸Ñз¢¡£

¿ÆÑÐÏîÄ¿£º

2021.04~2024.03 ¸ßÆ·ÖÊÂÁ¹èºÏ½ðÖý¶§¼°¹¤³Ì»¯Ó¦ÓÃÑо¿  

2020.09~2022.12 ÂÁºÏ½ð¸×¸Ç½ðÏàͼÆ×ÑÐÖÆ               

2019.05~2021.04 XXXÂÁ»ù¸´ºÏ²ÄÁϹ¤³Ì»¯ÖƱ¸ÓëÓ¦Óü¼Êõ  

2018.06~2020.05ÂÁ»ù¸´ºÏ²ÄÁϹ¤³Ì»¯ÖƱ¸ÓëÓ¦Óü¼Êõ     

2017.04~2020.05 XXX»îÈûÑÐÖÆ                        

ѧÊõ³É¹û£º

1.     ÒÔµÚÒ»×÷Õß·¢±íÎÄÕÂ9ƪ£¬ÆäÖÐSCI 2ÇøÁ½Æª£¬4Çø1ƪ£¬EiÊÕ¼

4ƪ£»

2. ÓµÓз¢Ã÷רÀû5Ï

3. »ñ2015Äê¹ú¼Ò¿Æ¼¼½ø²½¶þµÈ½±Ò»Ï

»ñÉÂÎ÷Ê¡½ÌÓýÌü¿Æ¼¼½ø²½Ò»µÈ½±Ò»Ï

»ñÉÂÎ÷Ê¡¸ßµÈ½ÌÓý¶þµÈ½±Ò»Ï

»ñÖйú±øÆ÷¹¤Òµ¹ú·À½±Ò»Ï

·ëÞ±

»ù±¾ÐÅÏ¢

ÐÕÃû: ·ëÞ±    ³öÉúÄêÔ£º 1988.5    ѧÀú: Ñо¿Éú    ѧλ: ²©Ê¿

Ö°³Æ: ½²Ê¦    Ö°Îñ: ¡ª    ѧԺ: ²»ÏÞip×¢²áËÍ37Ôª½ð±Ò

ÁªÏµ·½Ê½£º cindybear@126.com

ѧϰ¾­Àú

2011ÄêÖÁ2016Ä꣺Î÷±±¹¤Òµ´óѧ£¬²ÄÁÏѧԺ£¬²©Ê¿

2010ÄêÖÁ2013Ä꣺Î÷±±¹¤Òµ´óѧ£¬²ÄÁÏѧԺ£¬Ë¶Ê¿

2006ÄêÖÁ2010Ä꣺Î÷±±¹¤Òµ´óѧ£¬²ÄÁÏѧԺ£¬Ñ§Ê¿

¹¤×÷¾­Àú

2016ÄêÖÁ½ñ£º²»ÏÞip×¢²áËÍ37Ôª½ð±Ò£¬½²Ê¦

ÕÐÉúÐÅÏ¢

ÿÄêÕÐÊÕ˶ʿÉú1-2Ãû£¬²©Ê¿Éú0Ãû¡£

½ÌÓý½Ìѧ

Ö÷½²¡¶²ÄÁÏÎïÀíÐÔÄÜ¡·¡¢¡¶¹¤³Ì²ÄÁÏѧ¡·µÈ¿Î³Ì¡£

Ñо¿·½Ïò

ÌÕ´É»ù¸´ºÏ²ÄÁÏ¡¢¸ßìØºÏ½ð

Éç»áÈÙÓþ

¡ª

ѧÊõ¼æÖ°

¡¶Materials Letters¡·¡¢¡¶Fusion Engineering & Design¡·µÈÆÚ¿¯Éó¸åÈË

¿ÆÑÐÏîÄ¿

£¨1£©ÉÂÎ÷Ê¡¿Æ¼¼Ìü£¬ÉÂÎ÷Ê¡×ÔÈ»¿ÆÑ§»ù´¡Ñо¿¼Æ»®ÇàÄêÏîÄ¿£¬2022JQ-480£¬»ùÌåºÏ½ð»¯¶Ô±øÆ÷ÈȶËÓÃRMI-C/SiC¸´ºÏ²ÄÁÏ¸ßÆµÍù¸´Âö³åÉÕÊ´µÄÓ°ÏìÑо¿£¬2022-2023£¬Ö÷³Ö

£¨2£©ÉÂÎ÷Ê¡½ÌÓýÌü£¬ÉÂÎ÷Ê¡½ÌÓýÌüרÏî¿ÆÑмƻ®ÏîÄ¿£¬¸ßÇ¿ÈÍSiCÔöÇ¿AlFeCrCoNiϵ¸ßìØºÏ½ð»ù¸´ºÏ²ÄÁϽçÃæµÄÓÅ»¯Éè¼Æ£¬19JK0402£¬2019-2020£¬Ö÷³Ö

£¨3£©ÖÐÑë¾üίװ±¸·¢Õ¹²¿£¬¹ú·À¿Æ¼¼ÖصãʵÑéÊÒ»ù½ð£¬614291104011417£¬XXXXºóSiC/SiC¸´ºÏ²ÄÁÏÖÐ×Ó·øÕÕÏÂ΢½á¹¹¼°ÐÔÄÜÑݱ䣬2018-2019£¬Ö÷³Ö

£¨4£©ÉÂÎ÷Ê¡¿Æ¼¼Ìü£¬ÉÂÎ÷Ê¡×ÔÈ»¿ÆÑ§»ù´¡Ñо¿¼Æ»®ÖصãÏîÄ¿£¬2020JC-49£¬¾üÃñÁ½ÓøßÐÔÄܽðÊô²ÄÁÏ£¬2020-2021¡¢²ÎÓë

£¨5£©ÉÂÎ÷Ê¡¿Æ¼¼Ìü¡¢ÉÂÎ÷Ê¡×ÔÈ»¿ÆÑ§»ù´¡Ñо¿¼Æ»®-ÇàÄêÏîÄ¿¡¢2020JQ-808¡¢³¬¸ßÎÂÇ¿ÈÈÕðЭͬ³åÊ´»·¾³ÖÐC/C-SiCµÄÉÕÊ´»úÖÆÑо¿¡¢2020-2021¡¢²ÎÓë

£¨6£©ÖÐÑë¾üίװ±¸·¢Õ¹²¿¡¢¹ú·À¿Æ¼¼ÖصãʵÑéÊÒ»ù½ð¡¢6142911180306¡¢XXXX¸ÄÐÔÂÁ»ù¸´ºÏ²ÄÁÏ¸ßÆµÉÕÊ´ÌØÐÔ¡¢2019-2021¡¢²ÎÓë

ѧÊõ³É¹û

[1] Wei Feng, Chengwei Tang, Lei Liu, Jian Chen, Yang Zhang, Xiyuan Yao, Donglin Zuo, Feilong Liu, Effect of preset interfacial ZrB2 particles on the microstructure and properties of C/C-AlSi composites, Journal of Composite Materials, 2021, 55: 3203-3211.

[2] Wei Feng, Litong Zhang, Yongsheng Liu, Xiaoqiang Li, Laifei Cheng, Hui Bai, Fabrication of SiCf-CNTs/SiC composites with high thermal conductivity by vacuum filtration combined with CVI, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2016, 662: 506~510

[3] Wei Feng, Litong Zhang, Yongsheng Liu, Xiaoqiang Li, Laifei Cheng, Chenghao Hu, Hui Bai, Fabrication of (SiCf+SiCw)/SiC composites by CVI combined with tape casting£¬Ceramics International£¬2015, 41(8): 9995~9999

[4] Wei Feng, Litong Zhang, Yongsheng Liu, Xiaoqiang Li, Laifei Cheng, Shanlin Zhou, Hui Bai, The improvement in the mechanical and thermal properties of SiC/SiC composites by introducing CNTs into the PyC interface, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2015, 637: 123~129

[5] Wei Feng, Litong Zhang, Yongsheng Liu, Xiaoqiang Li, Laifei Cheng, Bo Chen, Hui Zhao, Increasing the thermal conductivity of 2D SiC/SiC composites by heat-treatment, Fusion Engineering and Design, 2015, 90: 110~118

[6] Wei Feng, Litong Zhang, Yongsheng Liu, Xiaoqiang Li, Laifei Cheng, Bo Chen, Thermal and mechanical properties of SiC/SiC-CNTs composites fabricated by CVI combined with electrophoretic deposition, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2015, 626: 500~504

[7] Lei Liu, Wei Feng, Boyan Li, Jianping Li, Leilei Zhang, Yongchun Guo, Zibo He, Yi Cao, Ailin Bao, Particle erosion of C/C-SiC composites with different Al addition in reactive melt infiltrated Si, Journal of Central South University, 2020, 27: 2557¨C2566.

[8] Lei Liu, Boyan Li, Wei Feng, Chengwei Tang, Jiaping Zhang, Xiyuan Yao, Zhong Yang, Yongchun Guo, Ping Wang, Yang Zhang, Effect of loading spectrum with different single pulsing time on the cyclic ablation of C/C-SiC-ZB2-ZrC composites in plasma, Corrosion Science, 2021, 192: 109817.

[9] Lei Liu, Leilei Zhang, Wei Feng, Jianping Li, Yaping Bai, Dong Tao, Xiaoqin Su, Yi Cao, Tong Bao, Jiaqi Zheng. Microstructure and properties of C/C¨CSiC composites prepared by reactive melt infiltration at low temperature in vacuum. Ceramics International, 2020, 46: 8469-8472.

[10] Yongsheng Liu, Chenghao Hu, Wei Feng, Jing Men, Laifei Cheng, Litong Zhang, Microstructure and properties of diamond/SiC composites prepared by tape-casting and chemical vapor infiltration process, Journal of the European Ceramic Society, 2014, 34(15): 3489~3498

ÁõÀÚ

»ù±¾ÐÅÏ¢

ÐÕÃû: ÁõÀÚ    ³öÉúÄêÔ£º1986.12    ѧÀú: Ñо¿Éú    ѧλ: ²©Ê¿

Ö°³Æ: ¸±½ÌÊÚ    Ö°Îñ: ¡ª    ѧԺ: ²»ÏÞip×¢²áËÍ37Ôª½ð±Ò   

ÁªÏµ·½Ê½£ºliuleiNIN@126.com

ѧϰ¾­Àú

2011ÄêÖÁ2015Ä꣺Î÷±±¹¤Òµ´óѧ ²ÄÁÏѧԺ£¬²©Ê¿

2010ÄêÖÁ2015Ä꣺Î÷±±¹¤Òµ´óѧ ²ÄÁÏѧԺ£¬Ë¶Ê¿

2006ÄêÖÁ2010Ä꣺Î÷±±¹¤Òµ´óѧ ²ÄÁÏѧԺ£¬Ñ§Ê¿

¹¤×÷¾­Àú

2016ÄêÖÁ2018Ä꣺²»ÏÞip×¢²áËÍ37Ôª½ð±Ò£¬½²Ê¦

2015ÄêÖÁ2016Ä꣺Î÷±±ÓÐÉ«½ðÊôÑо¿Ôº£¬¹¤³Ìʦ

ÕÐÉúÐÅÏ¢

ÿÄêÕÐÊÕ˶ʿÉú1-3Ãû£¬²©Ê¿Éú0Ãû¡£

½ÌÓý½Ìѧ

Ö÷½²¡¶ÈÈ´¦ÀíÔ­Àí¡·¡¢¡¶½ü´ú±íÃæ¹¤³Ì¼¼Êõ¡·¡¢¡¶¹¤³Ì²ÄÁÏѧ¡·µÈ¿Î³Ì£»Ö¸µ¼½ðÊô²ÄÁϹ¤³ÌרҵÉú²úʵϰ¡£

Ñо¿·½Ïò

C/C¸´ºÏ²ÄÁÏ¡¢ÌÕ´É»ù¸´ºÏ²ÄÁÏ¡¢ÂÁ\þºÏ½ð¼°Æä¸´ºÏ²ÄÁÏ¡¢Ìú»ùºÏ½ð¡¢ÈÈ·À»¤Í¿²ã£¬¸ßÎÂÑõ»¯¡¢ÈÈÕ𡢿¹ÉÕÊ´ÐÔÄÜ£¬ÇáÁ¿»¯¡£

Éç»áÈÙÓþ

¡ª

ѧÊõ¼æÖ°

Ϊ¡¶Corros. Sci.¡·¡¢¡¶J. Mater. Sci. Technol.¡·¡¢¡¶J. Alloy. Compd.¡·¡¢¡¶Ceram. Int.¡·¡¢¡¶Mater. Lett.¡·¡¢¡¶Vacuum¡·µÈÆÚ¿¯Éó¸å¡£

¿ÆÑÐÏîÄ¿

£¨1£©¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðίԱ»á¡¢ÇàÄê¿ÆÑ§»ù½ðÏîÄ¿¡¢51902239¡¢SiC-ZrB2¸ÄÐÔC/C¸´ºÏ²ÄÁÏÔÚ·ÇÎÈ̬³¬¸ßλ·¾³ÖеĵÍÎÂÉÕÊ´»úÀíÑо¿¡¢2020-2022¡¢Ö÷³Ö

£¨2£©ÉÂÎ÷Ê¡¿ÆÑ§¼¼ÊõÌü¡¢ÉÂÎ÷Ê¡×ÔÈ»¿ÆÑ§»ù´¡Ñо¿¼Æ»®-ÇàÄêÏîÄ¿¡¢2020JQ-808¡¢³¬¸ßÎÂÇ¿ÈÈÕðЭͬ³åÊ´»·¾³ÖÐC/C-SiCµÄÉÕÊ´»úÖÆÑо¿¡¢2020-2021¡¢Ö÷³Ö

£¨3£©ÖÐÑë¾üίװ±¸·¢Õ¹²¿¡¢¹ú·À¿Æ¼¼ÖصãʵÑéÊÒ»ù½ð¡¢6142911180306¡¢XXXX¸ÄÐÔÂÁ»ù¸´ºÏ²ÄÁÏ¸ßÆµÉÕÊ´ÌØÐÔ¡¢2019-2021¡¢Ö÷³Ö

£¨4£©Î÷±±¹¤Òµ´óѧÄý¹Ì¼¼Êõ¹ú¼ÒÖØµãʵÑéÊÒ¡¢Äý¹Ì¼¼Êõ¹ú¼ÒÖØµãʵÑéÊÒ¿ª·Å¿ÎÌâ¡¢SKLSP201752¡¢¸ß¹¦ÂÊÃܶÈÄÚȼ»ú»îÈûÓÃC/C-AlSi¸´ºÏ²ÄÁÏÑо¿¡¢2017-2018¡¢Ö÷³Ö

£¨5£©Öйú±±·½·¢¶¯»úÑо¿Ëù¡¢ºáÏò-¼¼Êõ¿ª·¢£¨Î¯ÍУ©¡¢DLBF-2018-KY-JS-066-J¡¢ÂÁºÏ½ð»îÈû½ðÏà·ÖÎö¼°ÉÕÊ´³ÉÒòÑо¿¡¢2018-2020¡¢Ö÷³Ö

²ÎÑÐÖÐÑë¾üίװ±¸·¢Õ¹²¿¡¢JWKJW¹ú·À´´ÐÂÌØÇø¡¢ÉÂÎ÷Ê¡ÖØµã²úÒµ¡¢ÆóÒµºáÏòµÈÏîĿʮÓàÏî

ѧÊõ³É¹û

[1] Lei Liu, Boyan Li, Wei Feng, Chengwei Tang, Jiaping Zhang, Xiyuan Yao, Zhong Yang, Yongchun Guo, Ping Wang, Yang Zhang. Effect of loading spectrum with different single pulsing time on the cyclic ablation of C/C-SiC-ZB2-ZrC composites in plasma. Corrosion Science, 2021, 192: 109817.

[2] Lei Liu, Hejun Li, Wei Feng, Xiaohong Shi, Heng Wu, Junliang Zhu. Effect of surface ablation products on the ablation resistance of C/C-SiC composites under oxyacetylene torch. Corrosion Science, 2013, 67: 60-66.

[3] Lei Liu, Hejun Li, Wei Feng, Xiaohong Shi, Kezhi Li, Lingjun Guo. Ablation in different heat fluxes of C/C composites modified by ZrB2-ZrC and ZrB2-ZrC-SiC particles. Corrosion Science, 2013, 74: 159-167.

[4] Lei Liu, Hejun Li, Kui Hao, Xiaohong Shi, Kezhi Li, Chang Ni. Effect of SiC location on the ablation of C/C-SiC composites in two heat fluxes. Journal of Materials Science & Technology, 2015, 31(4): 345-354.

[5] Lei Liu, Leilei Zhang, Wei Feng, Jianping Li, Yaping Bai, Dong Tao, Xiaoqin Su, Yi Cao, Tong Bao, Jiaqi Zheng. Microstructure and properties of C/C¨CSiC composites prepared by reactive melt infiltration at low temperature in vacuum. Ceramics International, 2020, 46: 8469-8472.

[6 Lei Liu, Hejun Li, Yudan Zhang, Xiaohong Shi, Qiangang Fu, Wei Feng, Tao Feng. Effect of ZrB2 and SiC distributions on the ablation of modified carbon/carbon composites. Ceramics International, 2015, 41: 1823-1829.

[7] Lei Liu, Hejun Li, Xiaohong Shi, Qiangang Fu, Wei Feng, Xiyuan Yao, Chang Ni. Influence of SiC additive on the ablation behavior of C/C composites modified by ZrB2-ZrC particles under oxyacetylene torch. Ceramics International, 2014, 40: 541-549.

[8] Lei Liu, Chengwei Tang, Boyan Li, Jianping Li, Tong Bao, Zhong Yang, Yongchun Guo, Wei Feng, Zhuo Lei, Haiying Li. Surface evolution of Al¨CSi¨CCu alloy in a high frequent pulsing oxyacetylene combustion. Case Studies in Thermal Engineering, 2022, 31: 101854.

[9] Lei Liu, Boyan Li, Yongchun Guo, Xiyuan Yao, Wei Yang, Wei Feng, XingyuChen, Xiaotian Wei, Yu Gao. Effect of infiltrated eutectic AlSi on the microstructure and properties of C/C composites. Journal of Composite Materials, 2020, 55: 1349-1357.

[10] Lei Liu, Wei Feng, Boyan Li, Jianping Li, Leilei Zhang, Yongchun Guo, Zibo He, Yi Cao, Ailin Bao. Particle erosion of C/C-SiC composites with different Al addition in reactive melt infiltrated Si. Journal of Central South University, 2020, 27: 2557¨C2566.

[11] Lei Liu, Haijun Zhang, Boyan Li, Zhong Yang, Tong Bao, Jianping Li, Yongchun Guo, Feng Xia, Wei Yang, HaiyingLi. Surface evolution of Al-Si-Cu alloy in thermal shock under different heating speeds. Journal of Central South University, 2021, 28: 2988-2998.

[12] Lei Liu, Hejun Li, Xiaohong Shi, Wei Feng, Yongjie Wang, Dongjia Yao. Effect of SiC addition on the ablation properties of C/C composites in different heat fluxes under oxyacetylene torch. Vacuum, 2013, 90: 97-99.

[13] Lei Liu, Hejun Li, Xiaohong Shi, Wei Feng, Bo Feng, Can Sun. Effect of Cu particles on the ablation properties of C/C composites. Solid State Sciences, 2013, 25: 78-84.

[14] Hejun Li, Lei Liu, Yudan Zhang, Kezhi Li, Xiaohong Shi, Yulei Zhang, Wei Feng. Effect of high temperature heat treatment on the ablation of SiC-ZrB2-ZrC particles modified C/C composites in two heat fluxes. Journal of Alloys and Compounds, 2015, 621: 18-25.

[15] Xuetao Shen, Lei Liu, Wei Li, Kezhi Li. Ablation behaviour of C/C¨CZrC composites in a solid rocket motor environment. Ceramics International, 2015, 41(9): 11793-11803.

[16] Tong Bao, Jianping Li, Lei Liu, Haiying Li, Zhong Yang, Yongchun Guo, Feng Xia, Wei Yang, Dong Tao, Jiaqi Zheng. Evolution of Al-Si-Cu alloy in piston of diesel engine during knock damage. Engineering Failure Analysis, 2020, 112: 104501.

[17] Tong Bao, Jianping Li, Lei Liu, Haiying Li, Zhong Yang, Jianli Wang, Yongchun Guo, Boyan Li, Wei Yang, Jiaqi Zheng. Evolution of surface roughness of a cast Al-Si-Cu piston alloy during thermal exposure. Journal of Central South University, 2020, 27: 1645-1653.

[18] Wei Feng, Chengwei Tang, Lei Liu, Jian Chen, Yang Zhang, Xiyuan Yao, Donglin Zuo, Feilong Liu. Effect of preset interfacial ZrB2 particles on the microstructure and properties of C/C-AlSi composites. Journal of Composite Materials, 2021, 55: 3203-3211.

[19] ÀîÑô, Àƽ, ÁõÀÚ, ¹ùÓÀ´º, ±£Í®, ¸ßÓî, ¹¨ÎĽ¡, ÍõÔµ. ÖýÔìAl-SiºÏ½ð±íÃæ´Ö²Ú¶ÈµÄ¸ßÎÂÑݱä»úÖÆ. ÖйúÓÐÉ«½ðÊôѧ±¨, 2021, 31: 2115-2124.

[20] ÅíÓåÀö, ÍõƼ, Íõ½¨Àû, Àî¸ßºê, ʷС±¦, ÁõÀÚ, ÂíÖ¾¾ü, ÑîÖÒ, ¹ùÓÀ´º. ¸ßÆ·ÖÊþºÏ½ð¸´ºÏ²ÄÁÏÓëЭºÍ¸ÄÐÔ·À»¤¹Ø¼ü¼¼Êõ¼°Ó¦ÓÃ. ÉÂÎ÷Ê¡¿ÆÑ§¼¼Êõ½ø²½¶þµÈ½± 2020Äê04ÔÂ.

 

²»ÏÞip×¢²áËÍ37Ôª½ð±Ò    °æÈ¨ËùÓÐ
µØÖ·£ºÉÂÎ÷Ê¡Î÷°²ÊÐδÑë´óѧ³Çѧ¸®Öз2ºÅ Óʱࣺ710021
µç»°£º029-86173324 86173323£¨±¾¿ÆÕÐÉúרÏߣ©

²»ÏÞip×¢²áËÍ37Ôª½ð±Ò(ÁÙÏæ)ÓÐÏÞ¹«Ë¾