»ù±¾ÐÅÏ¢
ÐÕÃû£ººÎ¼Ñ»ª ³öÉúÄêÔ£º1991Äê12ÔÂ
ѧÀú£º²©Ê¿Ñо¿Éú ѧλ£º¹¤Ñ§²©Ê¿
Ö°³Æ£º½²Ê¦£¨Ð£Æ¸¸±½ÌÊÚ£© ÓÊÏ䣺hejiahua@xatu.edu.cn
ѧԺ£º²»ÏÞip×¢²áËÍ37Ôª½ð±Ò רҵ£º½ðÊô²ÄÁϹ¤³Ìϵ
ѧϰ¾Àú
2013ÄêÖÁ2020Äê Î÷±±¹¤Òµ´óѧ ²©Ê¿£¨ÍÆÃâÖ±²©£©£¬µ¼Ê¦£º¹ùϲƽ
2009ÄêÖÁ2013Äê Î÷±±¹¤Òµ´óѧ ѧʿ£¨½ÌÓýʵÑéѧԺ/²ÄÁÏѧԺ£©
¹¤×÷¾Àú
2021Äê1ÔÂÖÁ½ñ ²»ÏÞip×¢²áËÍ37Ôª½ð±Ò ½²Ê¦£¨Ð£Æ¸¸±½ÌÊÚ£©
ÕÐÉúÐÅÏ¢
ÿÄêÕÐÊÕ˶ʿÉú1~2Ãû
½ÌÓý½Ìѧ
Ö÷½²¿Î³Ì£º¡¶²ÄÁϼӹ¤»ù´¡2ÖýÔìÔÀí¡·
Ñо¿·½Ïò
¸ßìØºÏ½ð¶¨ÏòÄý¹Ì
¸ßìØºÏ½ðÒ칹ǿÈÍ»¯
´©¼×Õ½¶·²¿ÓøßìØºÏ½ð
¸ßηÀ»¤Í¿²ã
ÈÙÓþ/ѧÊõ¼æÖ°/»ñ½±
1¡¢ ÈëÑ¡2022ÄêÉÂÎ÷Ê¡¿ÆÐÇàÄêÈ˲ÅÍоټƻ®
2¡¢ ½ÌÓý²¿Ñо¿Éú½ÌÓýÆÀ¹À¼à²âר¼Ò¿âר¼Ò
¿ÆÑÐÏîÄ¿
1¡¢¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÇàÄêÏîÄ¿£¨No.52101093£©£¬MAXÏà¸ÄÐԹ軯ÎïÍ¿²ãµÄ×éÖ¯µ÷¿Ø¼°ÈÍÐÔ/¿¹Ñõ»¯ÐÔÄÜÑо¿£¬2022-01ÖÁ2024-12£¬30ÍòÔª£¬ÔÚÑУ¬Ö÷³Ö
2¡¢ÉÂÎ÷Ê¡½ÌÓýÌüÇàÄê´´ÐÂÍŶӿÆÑмƻ®ÏîÄ¿£¨No.22JP033£©£¬ÒìÖʽṹ¹²¾§¸ßìØºÏ½ðµÄ¶¨ÏòÄý¹Ì×éÖ¯Óë±äÐλúÀíÑо¿£¬2022-01ÖÁ2021-12, 5ÍòÔª£¬ÔÚÑУ¬Ö÷³Ö
3¡¢ÉÂÎ÷Ê¡¿ÆÐÇàÄêÈ˲ÅÍоټƻ®ÏîÄ¿£¨No. 20220467£©£¬Nb»ùºÏ½ð/MoSi2Í¿²ã½çÃæ¸ßìØºÏ½ð±¡Ä¤×èÀ©É¢»úÀíÑо¿£¬2023-01ÖÁ2024-12, 3ÍòÔª£¬ÔÚÑУ¬Ö÷³Ö
4¡¢¿Æ¼¼²¿ÖصãÑз¢¼Æ»®-Õþ¸®¼ä¹ú¼Ê¿Æ¼¼´´ÐºÏ×÷ÏîÄ¿£¨No.2022YFB0122900£©£¬Àë×Óºä»÷Ìõ¼þÏ·´Ó¦´Å¿Ø³Á»ý¸ßìØºÏ½ðµª»¯ÎﱡĤ¼¼ÊõÑо¿Ó뿪·¢£¬2023-01-2024-12£¬100ÍòÔª£¬ÔÚÑУ¬²ÎÓë
5¡¢¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÃæÉÏÏîÄ¿£¨No.51971181£©£¬¸ÄÐԹ軯î⸴ºÏÌݶÈÍ¿²ãµÄ×éÖ¯µ÷¿Ø¼°Æä¸ßο¹Ñõ»¯ÐÔÄÜÑо¿£¬2020-01-2023-12£¬58ÍòÔª£¬ÔÚÑУ¬²ÎÓë
6¡¢ÉÂÎ÷Ê¡¾üÃñÈںϷ¢Õ¹×¨ÏG20230415£©£¬***Í¿²ãµÄ¹Ø¼ü¼¼ÊõÑо¿£¬2023-01-2024-12£¬200ÍòÔª£¬ÔÚÑУ¬²ÎÓë
7¡¢ÉÂÎ÷Ê¡¾üÃñÈںϷ¢Õ¹×¨ÏG20220931£©£¬¸ßÐÔÄÜ***µÄ¹Ø¼ü¼¼ÊõÑо¿£¬2022-01-2023-12£¬200ÍòÔª£¬ÔÚÑУ¬²ÎÓë
8¡¢ÉÂÎ÷Ê¡×ÔÈ»¿ÆÑ§»ù´¡Ñо¿¼Æ»®ÏîÄ¿£¨2022JC-DW5-04£©£¬³¬¸ßÇ¿¶È¸ßìØºÏ½ðµÄ×éÖ¯µ÷¿ØºÍÇ¿ËÜÐÔÑо¿£¬2022-01-2024-12£¬100ÍòÔª£¬ÔÚÑУ¬²ÎÓë
9¡¢ºáÏòίÍÐμÄÏľÍõÖÇÄܿƼ¼¹É·ÝÓÐÏÞ¹«Ë¾£¨H202301002£©£¬¸ßìØºÏ½ð²ÄÁϼ°Í¿²ã¼¼Êõ£¬2022-12-2023-11£¬200ÍòÔª£¬ÔÚÑУ¬²ÎÓë
·¢±íÂÛÎÄ
[1] Jiahua He, Xiping Guo*, Yanqiang Qiao. Effect of Zr content on the structure and oxidation resistance of silicide coatings prepared by pack cementation technique. Corrosion Science, 2019, 147: 152-162. £¨ÖпÆÔº1Çø£©
[2] Jiahua He, Xiping Guo*, Yanqiang Qiao. Microstructure evolution and hot corrosion behavior of Zr-Y modified silicide coating prepared by two-step process. Corrosion Science, 2019, 156: 44-57. £¨ÖпÆÔº1Çø£©
[3] Jiahua He, Xiping Guo*, Yanqiang Qiao£¬Fa Luo. A novel Zr-Y modified silicide coating on Nb-Si based alloys as protection against oxidation and hot corrosion. Corrosion Science, 2020, 177: 108948. £¨ÖпÆÔº1Çø£©
[4] Jiahua He, Xiping Guo*, Yanqiang Qiao. Oxidation behavior and adhesion performance of TiSi2-NbSi2 composite coating prepared via magnetron sputtering and then pack cementation. Journal of Alloys and Compounds, 2020, 820: 153425.
[5] Jia-hua HE, Xi-ping GUO*, Yan-qiang QIAO. Oxidation and hot corrosion behaviors of Nb-Si based ultrahigh temperature alloys at 900 ¡ãC. Transactions of Nonferrous Metals Society of China, 2021, 31: 207-221.
[6] Jiahua He, Xiping Guo. Microstructure and oxidation resistance of Y modified silicide coatings prepared on Zr-Ti-Al alloy. Materials Science Forum. 2018, 913: 365-374.
[7] Shuaidan Lu, Xiaoxiao Li, Xiaoyu Liang, Jiahua He, Wenting Shao, Kuanhe Li, Jian Chen*. Effect of Y additions on the oxidation behavior of vacuum arc melted refractory high-entropy alloy AlMo0.5NbTa0.5TiZr at elevated temperatures. Vacuum. 2022, 201: 111069.
[8] Shuaidan Lu, Xiaoxiao Li, Xiaoyu Liang, Jiahua He, Wenting Shao, Kuanhe Li, Jian Chen*. Effect of Ho Addition on the Glass-Forming Ability and Crystallization Behaviors of Zr54Cu29Al10Ni7 Bulk Metallic Glass. Materials. 2022, 15(7): 2516.
[9] X. Zhou, J. Chen*, R. Ding** , H. Wu, J. Du, J. He, W. Wang, W. Sun, Y. Liu, G. Sha, H. Pan. Carbon-driven coherent nanoprecipitates enable ultrahigh yield strength in a high-entropy alloy. Materials Today Nano. 2023, 22: 100331.
[10] Xueyang Zhou, Jian Chen*, Rengen Ding** , Haoyue Wu, Shuaidan Lu, Jiahua He, Weili Wang, Hongge Pan. A novel coherent particles-reinforced FCC-based high-entropy superalloy with superior high-temperature compressive properties. Materials Science & Engineering A. 2023, 872: 144947.
[11] Xueyang Zhou, Jian Chen* , Rengen Ding** , Haoyue Wu, Shuaidan Lu, Jiahua He, Hongge Pan. Effect of Mn on microstructure and tensile properties of as-cast Al 0.5 CoFeNiC 0.1 high-entropy alloy. 2023, 873: 144951.
רÀû
[1] ¹ùϲƽ, ºÎ¼Ñ»ª, ÇÇÑåÇ¿. Zr£¬Ti£¬Al¶àÔª¸ÄÐԹ軯ÎïÉø²ãµÄÁ½²½·¨ÖƱ¸·½·¨. 2021-2-2, Öйú, ZL201910070452.X. ÊÚȨ
[2] ¹ùϲƽ, ÕÅËÉ, ºÎ¼Ñ»ª, ÇÇÑåÇ¿, ÌÆêÊ. Nb-Si»ù³¬¸ßκϽ𶧵ÄÖÆ±¸·½·¨. 2017-10-13, Öйú, ZL201610556027.8. ÊÚȨ
[3] ¹ùϲƽ, ÕÅËÉ, ÇÇÑåÇ¿, ÔøÓîÏè, ÕÅê», ÌÆêÊ, ºÎ¼Ñ»ª. ¶àÔªNb-Si»ù³¬¸ßκϽð²ÄÁϼ°ÆäÖÆ±¸·½·¨. 2016-10-26, Öйú, CN106048356A£¬ÉêÇë
[4] ÉÛÎÄæÃ£¬Íõ褣¬³Â½¨£¬ÑîΡ£¬Áõê×£¬ºÎ¼Ñ»ª£¬Â¬Ë§µ¤. ¾ßÓе¼µçÄÍÊ´Í¿²ãµÄȼÁÏµç³Ø½ðÊô¼«°å¼°ÆäÖÆ±¸·½·¨. 2022-3-2, Öйú£¬202210206361.6£¬ÉêÇë
[5] ÉÛÎÄæÃ£¬²ÜÀöÄÈ£¬³Â½¨£¬ÑîΡ£¬Â¬Ë§µ¤£¬ºÎ¼Ñ»ª£¬ÀîÖÙ˶. Ò»ÖÖÉí¹ÜÄÚÌűíÃæµÄ¸ßìØºÏ½ð±¡Ä¤¼°ÆäÖÆ±¸·½·¨. 2022-3-14, Öйú£¬202210247384.1£¬ÉêÇë
[6] ÉÛÎÄæÃ£¬²ÜÀöÄÈ£¬³Â½¨£¬ÑîΡ£¬ÀîÖÙ˶£¬ºÎ¼Ñ»ª£¬Â¬Ë§µ¤. Ìá¸ß¸ßìØºÏ½ðµª»¯ÎïĤĤ»ù½áºÏÇ¿¶ÈµÄÌݶȹý¶É²ã¼°ÖƱ¸·½·¨. 2022-3-22£¬Öйú£¬202210285916.0£¬ÉêÇë
[7] ºÎ¼Ñ»ª,ÕÔ¶Ô,¬˧µ¤,ÉÛÎÄæÃ,³Â½¨. Ò»ÖÖ Ti3SiC2 ¸ÄÐԹ軯ÎïÍ¿²ã¼°ÆäÖÆ±¸·½·¨. 2023-3-16£¬Öйú£¬202310255439.8£¬ÉêÇë
[8] ºÎ¼Ñ»ª,ÕÅÑÐñû,Íõ½¨Ê÷,¬˧µ¤,ÉÛÎÄæÃ,³Â½¨. Ò»ÖÖ»ùÓÚ¸ßÌݶȶ¨ÏòÄý¹ÌµÄÒì¹¹¹²¾§¸ßìØºÏ½ð¼°ÆäÖÆ±¸·½·¨. 2023-5-15£¬Öйú£¬202310543611X£¬ÉêÇë
[9] ºÎ¼Ñ»ª,ÕÅÑÐñû,Íõ½¨Ê÷,¬˧µ¤,ÉÛÎÄæÃ,³Â½¨. Ò»ÖÖ»ùÓÚ¶¨ÏòÄý¹Ì»ñµÃα¹²¾§×éÖ¯µÄ¸ßìØºÏ½ð¼°ÆäÖÆ±¸·½·¨. 2023-7-6£¬Öйú£¬202310824465.8£¬ÉêÇë